1000 resultados para van der Pol oscillator
Resumo:
In this paper we consider a complex-order forced van der Pol oscillator. The complex derivative Dα1jβ, with α, β ∈ ℝ+, is a generalization of the concept of an integer derivative, where α = 1, β = 0. The Fourier transforms of the periodic solutions of the complex-order forced van der Pol oscillator are computed for various values of parameters such as frequency ω and amplitude b of the external forcing, the damping μ, and parameters α and β. Moreover, we consider two cases: (i) b = 1, μ = {1.0, 5.0, 10.0}, and ω = {0.5, 2.46, 5.0, 20.0}; (ii) ω = 20.0, μ = {1.0, 5.0, 10.0}, and b = {1.0, 5.0, 10.0}. We verified that most of the signal energy is concentrated in the fundamental harmonic ω0. We also observed that the fundamental frequency of the oscillations ω0 varies with α and μ. For the range of tested values, the numerical fitting led to logarithmic approximations for system (7) in the two cases (i) and (ii). In conclusion, we verify that by varying the parameter values α and β of the complex-order derivative in expression (7), we accomplished a very effective way of perturbing the dynamical behavior of the forced van der Pol oscillator, which is no longer limited to parameters b and ω.
Resumo:
In this paper a complex-order van der Pol oscillator is considered. The complex derivative Dα±ȷβ , with α,β∈R + is a generalization of the concept of integer derivative, where α=1, β=0. By applying the concept of complex derivative, we obtain a high-dimensional parameter space. Amplitude and period values of the periodic solutions of the two versions of the complex-order van der Pol oscillator are studied for variation of these parameters. Fourier transforms of the periodic solutions of the two oscillators are also analyzed.
Resumo:
In this paper a modified version of the classical Van der Pol oscillator is proposed, introducing fractional-order time derivatives into the state-space model. The resulting fractional-order Van der Pol oscillator is analyzed in the time and frequency domains, using phase portraits, spectral analysis and bifurcation diagrams. The fractional-order dynamics is illustrated through numerical simulations of the proposed schemes using approximations to fractional-order operators. Finally, the analysis is extended to the forced Van der Pol oscillator.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.
Resumo:
We explore the dynamics of a periodically driven Duffing resonator coupled elastically to a van der Pol oscillator in the case of 1?:?1 internal resonance in the cases of weak and strong coupling. Whilst strong coupling leads to dominating synchronization, the weak coupling case leads to a multitude of complex behaviours. A two-time scales method is used to obtain the frequency-amplitude modulation. The internal resonance leads to an antiresonance response of the Duffing resonator and a stagnant response (a small shoulder in the curve) of the van der Pol oscillator. The stability of the dynamic motions is also analyzed. The coupled system shows a hysteretic response pattern and symmetry-breaking facets. Chaotic behaviour of the coupled system is also observed and the dependence of the system dynamics on the parameters are also studied using bifurcation analysis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The global and local synchronisation of a square lattice composed of alternating Duffing resonators and van der Pol oscillators coupled through displacement is studied. The lattice acts as a sensing device in which the input signal is characterised by an external driving force that is injected into the system through a subset of the Duffing resonators. The parameters of the system are taken from MEMS devices. The effects of the system parameters, the lattice architecture and size are discussed.
Resumo:
Cette thèse est constituée de deux parties : Dans la première partie nous étudions l’existence de solutions périodiques, de periode donnée, et à variations bornées, de l’équation de van der Pol en présence d’impulsions. Nous étudions, en premier, le cas où les impulsions ne dépendent pas de l’état. Ensuite, nous considèrons le cas où les impulsions dépendent de la moyenne de l’état et enfin, nous traitons le cas général où les impulsions dépendent de l’état. La méthode de résolution est basée sur le principe de point fixe de type contraction. Nous nous intéressons ensuite à l’étude d’un problème avec trois points aux limites, associé à certaines équations différentielles impulsives du second ordre. Nous obtenons un premier résultat d’existence de solutions en appliquant le théorème de point fixe de Schaefer. Un deuxième résultat est obtenu en utilisant le théorème de point fixe de Sadovskii. Pour le résultat d’unicité des solutions nous appliquons, enfin, un théorème de point fixe de type contraction. La deuxième partie est consacrée à la justification de la technique de moyennisation dans le cadre des équations différentielles floues. Les conditions sur les données que nous imposons sont moins restrictives que celles de la littérature.
Resumo:
Modern telecommunication equipment requires components that operate in many different frequency bands and support multiple communication standards, to cope with the growing demand for higher data rate. Also, a growing number of standards are adopting the use of spectrum efficient digital modulations, such as quadrature amplitude modulation (QAM) and orthogonal frequency division multiplexing (OFDM). These modulation schemes require accurate quadrature oscillators, which makes the quadrature oscillator a key block in modern radio frequency (RF) transceivers. The wide tuning range characteristics of inductorless quadrature oscillators make them natural candidates, despite their higher phase noise, in comparison with LC-oscillators. This thesis presents a detailed study of inductorless sinusoidal quadrature oscillators. Three quadrature oscillators are investigated: the active coupling RC-oscillator, the novel capacitive coupling RCoscillator, and the two-integrator oscillator. The thesis includes a detailed analysis of the Van der Pol oscillator (VDPO). This is used as a base model oscillator for the analysis of the coupled oscillators. Hence, the three oscillators are approximated by the VDPO. From the nonlinear Van der Pol equations, the oscillators’ key parameters are obtained. It is analysed first the case without component mismatches and then the case with mismatches. The research is focused on determining the impact of the components’ mismatches on the oscillator key parameters: frequency, amplitude-, and quadrature-errors. Furthermore, the minimization of the errors by adjusting the circuit parameters is addressed. A novel quadrature RC-oscillator using capacitive coupling is proposed. The advantages of using the capacitive coupling are that it is noiseless, requires a small area, and has low power dissipation. The equations of the oscillation amplitude, frequency, quadrature-error, and amplitude mismatch are derived. The theoretical results are confirmed by simulation and by measurement of two prototypes fabricated in 130 nm standard complementary metal-oxide-semiconductor (CMOS) technology. The measurements reveal that the power increase due to the coupling is marginal, leading to a figure-of-merit of -154.8 dBc/Hz. These results are consistent with the noiseless feature of this coupling and are comparable to those of the best state-of-the-art RC-oscillators, in the GHz range, but with the lowest power consumption (about 9 mW). The results for the three oscillators show that the amplitude- and the quadrature-errors are proportional to the component mismatches and inversely proportional to the coupling strength. Thus, increasing the coupling strength decreases both the amplitude- and quadrature-errors. With proper coupling strength, a quadrature error below 1° and amplitude imbalance below 1% are obtained. Furthermore, the simulations show that increasing the coupling strength reduces the phase noise. Hence, there is no trade-off between phase noise and quadrature error. In the twointegrator oscillator study, it was found that the quadrature error can be eliminated by adjusting the transconductances to compensate the capacitance mismatch. However, to obtain outputs in perfect quadrature one must allow some amplitude error.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Future sensor arrays will be composed of interacting nonlinear components with complex behaviours with no known analytic solutions. This paper provides a preliminary insight into the expected behaviour through numerical and analytical analysis. Specically, the complex behaviour of a periodically driven nonlinear Duffing resonator coupled elastically to a van der Pol oscillator is investigated as a building block in a 2D lattice of such units with local connectivity. An analytic treatment of the 2-device unit is provided through a two-time-scales approach and the stability of the complex dynamic motion is analysed. The pattern formation characteristics of a 2D lattice composed of these units coupled together through nearest neighbour interactions is analysed numerically for parameters appropriate to a physical realisation through MEMS devices. The emergent patterns of global and cluster synchronisation are investigated with respect to system parameters and lattice size.