141 resultados para uwb
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2713 – 2716, Seattle, EUA
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.
Resumo:
In this paper, the problem of frame-level symboltiming acquisition for UWB signals is addressed. The main goalis the derivation of a frame-level timing estimator which does notrequire any prior knowledge of neither the transmitted symbolsnor the received template waveform. The independence withrespect to the received waveform is of special interest in UWBcommunication systems, where a fast and accurate estimation ofthe end-to-end channel response is a challenging and computationallydemanding task. The proposed estimator is derived under theunconditional maximum likelihood criterion, and because of thelow power of UWB signals, the low-SNR assumption is adopted. Asa result, an optimal frame-level timing estimator is derived whichoutperforms existing acquisition methods in low-SNR scenarios.
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, we have investigated two major types of wide band planar antennas: Monopole and Slot. Four novel compact broadband antennas, suitable for poratble applications, are designed and characterized, namely 1. Elliptical monopole 2. Inverted cone monopole 3. Koch fractal slot 4. Wide band slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and time-domain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated.
Resumo:
Design of a compact microstrip-fed ultra-wideband antenna suitable for USB dongle and other such space constraint applications is presented. The structure consists of a pentagonal monopole element and a modified ground plane that gives an impedance bandwidth from 2.8 to 12 GHz. Radiation patterns are stable and omni-directional throughout the band with an average gain of 2.84 dBi. The antenna occupies only 11 × 30 mm2 on FR4 substrate with permittivity 4.4.
Resumo:
A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.
Resumo:
The thesis is the outcome of the exhaustive theoretical and experimental investigations performed on Printed Monopole Antennas loaded with different geometries .The work presented in this thesis describes the development of a 3D- FDTD(Finite Difference Time Domain) Modeller using MATLAB for the numerical computation of the radiation characteristics of the antenna. The predicted results are verified experimentally and also through simulation using Ansoft HFSS.The effect of top loading of the monopole with different geometries ,the dimensions of the loading patch and ground plane and the material parameters of the dielectric substrate upon the radiation performance of the antenna is studied in detail. Optimized Printed Monopole antennas suitable for Ultra Wide Band (UWB) applications have been developed.
Resumo:
The design and performance of a stepped slot printed monopole antenna in the ultrawideband is presented in this article. Multiple resonances generated by the stepped slot geometry are matched in the ultrawideband using a modified microstrip feed. The impedance bandwidth (SWR < 2) of the antenna is from 3 to 11 GHz. Radiation patterns are stable and omnidirectional with appreciable gain throughout the band. Performance of the antenna is also analyzed in the time domain, which reveals good pulse handling capabilities. Compact geometry of the antenna allows easy commercial deployment.
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band
Resumo:
A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power solutions biased toward the competitive consumer electronics market.
Resumo:
This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).