1000 resultados para urban soils
Resumo:
The objective of this work was to evaluate the effects of pollutants on the abundance and diversity of Collembola in urban soils. The research was carried out in three parks (Cişmigiu, Izvor and Unirea) in downtown Bucharest, where the intense car traffic accounts for 70% of the local air pollution. One site in particular (Cişmigiu park) was highly contaminated with Pb, Cd, Zn and Cu at about ten times the background levels of Pb. Collembola were sampled in 2006 (July, September, November) using the transect method: 2,475 individuals from 34 species of Collembola were collected from 210 samples of soil and litter. Numerical densities differed significantly between the studied sites.The influence of air pollutants on the springtail fauna was visible at the species richness diversity and soil pollution levels. Species richness was lowest in the most contaminated site (Cismigiu, 11 species), which presented an increase in springtails abundances, though. Some species may become resistant to pollution and occur in high numbers of individuals in polluted sites, which makes them a good bioindicator of pollutants.
Resumo:
The effect of soil contamination by polycyclic aromatic hydrocarbons (PAH) and heavy metals on earthworms and enchytraeids was studied in urban parks, in Brno, Czech Republic. In spring and autumn 2007, annelids were collected and soil samples taken in lawns along transects, at three different distances (1, 5 and 30 m) from streets with heavy traffic. In both seasons, two parks with two transects each were sampled. Earthworms were collected using the electrical octet method. Enchytraeids were extracted by the wet funnel method from soil cores. All collected annelids were counted and identified. Basic chemical parameters and concentrations of 16 PAH, Cd, Cu, Pb, and Zn were analysed from soil from each sampling point. PAH concentrations were rather low, decreasing with the distance from the street in spring but not in autumn. Heavy metal concentrations did not decrease significantly with increasing distance. Annelid densities did not significantly differ between distances, although there was a trend of increase in the number of earthworms with increasing distance. There were no significant correlations between soil content of PAH or heavy metals and earthworm or enchytraeid densities. Earthworm density and biomass were negatively correlated with soil pH; and enchytraeid density was positively correlated with soil phosphorus.
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
Environmental conditions in the tropics favor the formation of polar polycyclic aromatic compound (polar PACs, such as oxygenated PAHs [OPAHs] and azaarenes [AZAs]), but little is known about these hazardous compounds in tropical soils. The objectives of this work were to determine (i) the level of contamination of soils (0–5 and 5–10 cm layers) from the tropical metropolis of Bangkok (Thailand) with OPAHs and AZAs and (ii) the influence of urban emission sources and soil properties on the distribution of PACs. We hypothesized that the higher solar insolation and microbial activity in the tropics than in the temperate zone will lead to enhanced secondary formation of OPAHs. Hence, OPAH to related parent-PAH ratios will be higher in the tropical soils of Bangkok than in temperate soils of Bratislava and Gothenburg. The concentrations of ∑15OPAHs (range: 12–269 ng g−1) and ∑4AZAs (0.1–31 ng g−1) measured in soils of Bangkok were lower than those in several cities of the industrialized temperate zone. The ∑15OPAHs (r = 0.86, p < 0.01) and ∑4AZAs (r = 0.67, p < 0.01) correlated significantly with those of ∑20PAHs highlighting similar sources and related fate. The octanol–water partition coefficient did not explain the transport to the subsoil, indicating soil mixing as the reason for the polar PAC load of the lower soil layer. Data on PAC concentrations in soils of Bratislava and Gothenburg were taken from published literature. The individual OPAH to parent-PAH ratios in soils of Bangkok were mostly higher than those of Bratislava and Gothenburg (e.g. 9-fluorenone/fluorene concentration ratio was 12.2 ± 6.7, 5.6 ± 2.4, and 0.7 ± 02 in Bangkok, Bratislava and Gothenburg soils, respectively) supporting the view that tropical environmental conditions and higher microbial activity likely lead to higher OPAH to parent-PAH ratios in tropical than in temperate soils.
Resumo:
The benefits of urban agriculture are many and well documented, ranging from health improvement to community betterment, more sustainable urban development and environment protection. On the negative side, urban soils are commonly enriched in toxic trace elements that have accumulated over time through the deposition of atmospheric particles (generated by automotive traffic, heating systems, historical industrial activities and resuspended street dust), and the uncontrolled disposal of domestic, commercial and industrial wastes. This in turn has given rise to concerns about the level of exposure of urban farmers to these elements and the potential health hazards associated with this exposure. Research efforts in this field have started relatively recently and have almost systematically omitted the influence of Sb and Se, and to a lesser extent of As, although all three have proven toxic effects.
Resumo:
On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
Resumo:
There has been little research on metal concentration levels in urban soils of SA o pound Paulo, a city with 19 million inhabitants with severe pollution problems. In the present study, the concentration of As, Ba, Cr, Cu, Pb, Sb and Zn, were determined by INAA and XRF in surface soil samples from 7 public parks located within SA o pound Paulo city. The results obtained showed that soils of SA o pound Paulo public parks present concentration levels of the studied elements higher than the reference values for soils in SA o pound Paulo State. Traffic related elements such as Cu, Pb and Zn presented high concentrations in parks located near avenues of highly dense traffic and may be associated to vehicular sources.
Resumo:
Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211– 222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a KOC of 14,918 Lkg−1, closely corresponded to the average measured KOC value for the topsoils, and this model is therefore recommended for prediction of phenanthrene mobility in cultivated topsoils. For lower subsoils (0.25–1-m depth), the KOC values were closer to and mostly below the estimate by the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211–222, 1987) model. This implies a different organic matter composition and higher PAH sorption strength in cultivated topsoils, likely due to management effects including more rapid carbon turnover. Finally, we applied the recent Dexter et al. (Geoderma 144:620–627, 2008) theorem, and calculated the complexed organic carbon and non-complexed organic carbon fractions (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (KNCOC) could be markedly higher than the COCbased partition coefficient (KCOC) for soils with a clay/OC ratio <10. This possibly higher PAH sorption affinity to the NCOC fraction needs further investigations to develop more realistic and accurate models for PAH mobility and effects in the environment, also with regard to colloid-facilitated PAH transport.
Resumo:
The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.
Resumo:
So Paulo is the largest city in Brazil and South America with about 20 million inhabitants in the metropolitan area, more than nine million motor vehicles and intense industrial activity, which are responsible for increasing pollution in the region. Nevertheless, little is known concerning metal and semi-metal content in the soils of this metropolitan region. This type of information could be extremely useful as a fingerprint of environmental pollution. The present study determined the elements As, Ba, Co, Cr, Sb, and Zn concentrations in soils adjacent to avenues of highly dense traffic in So Paulo city to assess their levels and possible sources. The analytical technique employed was Instrumental neutron activation analysis. The results showed, except for Co, concentration levels higher than the reference values for soils of So Paulo, according to the Environmental Protection Agency of the State of So Paulo guidelines. When compared to similar studies in other cities around the world, So Paulo soils presented higher levels, probably due to its high density traffic and industrial activity. The concentrations obtained for As and Cr indicate anthropogenic origin. The high levels of the traffic-related elements Ba, Sb, and Zn in soils nearby high density traffic avenues indicate they may originate from vehicular exhausts.
Resumo:
Human health problems and solutions. Urban gardening has spread worldwide in recent years as it enhances food security and selfsupply and promotes community integration. However urban soils are significantly enriched in trace elements relative to background levels. Exposure to the soil in urban gardens may therefore result in adverse health effects depending on the degree of contact during gardening, infant recreational activities and ingestion of vegetables grown in them. In order to evaluate this potential risk, 36 composite samples were collected from the top 20 cm of the soil of 6 urban gardens in Madrid. The aqua regia (pseudototal) and glycine-extractable (bioaccessible) concentrations of Co, Cr, Cu, Ni, Pb and Zn were determined by atomic absorption spectrophotometry. Additionally, pH, texture, Fe, Ca, and Mn concentrations, and organic matter and calcium carbonate contents were determined in all urban gardens and their influence on trace element bioaccessibility was analyzed.
Resumo:
The research work reported in this thesis is concerned with the development and application of an urban scale sampling methodology for measuring and assessing background levels of heavy metal soil contamination in large and varied urban areas. The policy context of the work is broadly the environmental health problems posed by contaminated land and their implications for urban development planning. Within this wider policy context, the emphasis in the research has been placed on issues, related to the determination and application of 'guidelines' for assessing the significance of contaminated land for environmental planning. In concentrating on background levels of land contamination, the research responds to the need for additional techniques which address both the problems of measuring soil contamination at the urban scale and which are also capable of providing detailed information for use in the assessment of contaminated sites. Therefore, a key component of the work has been the development of a land-use based sampling framework for generating spatially comprehensive data on heavy metals in soil. The utility of the information output of the sampling method is demonstrated in two alternative ways. Firstly, it has been used to map the existing pattern of typical levels of heavy metals in urban soils. Secondly, it can be used to generate both generalised data in the form of 'reference levels' from which the overall significance of .background contamination may be assessed and detailed data, termed 'normal limit levels' for use in the assessment of site specific investigation data. The fieldwork was conducted in the West Midlands Metropolitan County and surface soil has been sampled and analysed for a measure of plant-available' and 'total' lead cadmium, copper and zinc. The research contrasts with much of the previous work on contaminated land which has generally concentrated on either the detailed investigation of individual sites suspected of being contaminated or the appraisal of land contamination resulting from specific point sources.
Resumo:
The concentrations of Cu, Pb, Zn, Cr, Ni, Al, Mn and Fe were measured by atomic absorption spectrometry, of 19 topsoil samples collected in the Teresina city urban area to discriminate natural and anthropic contributions and identify possible sources of pollution. The average concentrations of Cu, Zn, Pb and Cr of the urban soils were 6.11, 8.56, 32.12 and 7,17 mg/kg-1, respectively. Statistical analysis techniques, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to analyze the data. Mn, Ni and Cr levels were interpreted as natural contributions, whereas Pb, Zn and, in part, Cu were accounted for mainly by anthropic activities. High Pb levels were observed in the ancient avenues.