996 resultados para uranium
Resumo:
Phosphoric acid is generally obtained from an aqueous process starting with the reaction between phosphate rock and sulphuric acid. Due to their chemical similarity, uranium is usually associated with phosphate rock which during chemical processing is partitioned to phosphoric acid. Uranium determination in this matrix is a very important task because of its ingestion it could lead to radiological impact on the population. Therefore, a procedure was developed using an initial precipitation with calcium hydroxide and evaporation, followed by instrumental neutron activation analysis (INAA). The procedure was applied to analyse fourteen uranium enriched phosphoric acid samples.
Resumo:
Uranium is a natural radioactive metallic element; its effect on the organism is cumulative, and chronic exposure to this element can induce carcinogenesis. Three cities of the Amazon region-Monte Alegre, Prainha, and Alenquer-in North Brazil, are located in one of the largest uranium mineralization areas of the world. Radon is a radioactive gas, part of uranium decay series and readily diffuses through rock. In Monte Alegre, most of the houses are built of rocks removed from the Earth`s crust in the forest, where the uranium reserves lie. The objective of the present work is to determine the presence or absence of genotoxicity and risk of carcinogenesis induced by natural exposure to uranium and radon in the populations of these three cities. The frequency of micronuclei (MN) and chromosomal aberrations (CA) showed no statistically significant differences between the control population and the three study populations (P > 0.05). MN was also analyzed using the fluorescence in situ hybridization (FISH) technique, with a centromere-specific probe. No clastogenic and/or aneugenic effects were found in the populations. Using FISH analysis, other carcinogenesis biomarkers were analyzed, but neither the presence of the IGH/BCL2 translocation nor an amplification of the MYC gene and 22q21 region was detected. Clastogenicity and DNA damage were also not found in the populations analyzed using the alkaline comet assay. The mitotic index showed no cytotoxicity in the analyzed individuals` lymphocytes. Once we do not have data concerning radiation doses from other sources, such as cosmic rays, potassium, thorium, or anthropogenic sources, it is hard to determine if uranium emissions in this geographic region where our study population lives are too low to cause significant DNA damage. Regardless, genetic analyses suggest that the radiation in our study area is not high enough to induce DNA alterations or to interfere with mitotic apparatus formation. It is also possible that damages caused by radiation doses undergo cellular repair.
Resumo:
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at Tapproximate to0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBa2Cu3O7-delta sample, indicates that superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
Resumo:
The technique of in situ leach (ISL) uranium mining is well established in the USA, as well as being used extensively in Eastern Europe and the former Soviet Union. The method is being proposed and tested on uranium deposits in Australia, with sulfuric acid chemistry and no restoration of groundwater following mining. Test sites in the USA were required to restore groundwater to ascertain the extent of impacts and compare costs to alkaline ISL mines. The problems encountered include expensive and difficult restoration, gypsum precipitation, higher salinity and some heavy metals and radionuclides after restoration. One of the most critical issues is whether natural attenuation is capable of restoring groundwater quality and geochemical conditions in an acid leached aquifer zone. The history of acid ISL sites in the USA and Australia are presented in this study, with a particular focus on the demonstration of restoration of groundwater impacts.
Resumo:
The technique of in situ leach (ISL) uranium mining is well established in the USA, as well as being used extensively in Eastern Europe and the former Soviet Union. The method is being proposed and tested on uranium deposits in Australia, with sulphuric acid chemistry and no restoration of groundwater following mining. ISL mines in the former Soviet Union generally used acid reagents and were operated without due consideration given to environmental protection. At many former mine sites, the extent of groundwater contamination is significant because of high salinity, heavy metal and radionuclide concentrations compared with pre-mining and changes in the hydrogeological regime caused by mining. After the political collapse of the Soviet Union by the early 1990s, most uranium mines were shut down or ordered to be phased out by government policy. Programmes of restoration are now being undertaken but are proving technically difficult and hampered by a lack of adequate financial resources. The history and problems of acid ISL sites in countries of the former Soviet Union and Asia are presented in this study.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro Área de especialização – Vidro
Resumo:
Journal of Cultural Heritage, nº 9 (2008), p. 64-68
Resumo:
El batolito de Achala es uno de los macizos graníticos más grandes de las Sierras Pampeanas, el cual se localiza en las Sierras Grandes de Córdoba. Si bien el batolito de Achala ha sido objeto de diversos estudios geológicos, principalmente debido a sus yacimientos de uranio, el mismo todavía no posee un inequívoco modelo petrogéntico. Tampoco existe, en la actualidad, un inequívoco modelo que explique la preconcentración de uranio en las rocas graníticas portadores de este elemento. Este Proyecto tiene como objetivo general realizar estudios petrológicos y geoquímicos en la región conocida como CAÑADA del PUERTO, un lugar estratégicamente definido debido a la abundancia de granitos equigranulares de grano fino y/o grano medio biotíticos, emplazados durante el desarrollo de cizallas magmáticas tardías, y que constituirían las rocas fuentes de uranio. El objetivo específico requiere estudios detallados de las diferentes facies del batolito de Achala en el área seleccionada, incluyendo investigaciones petrológicas, geoquímicas de roca total, geoquímica de isótopos radiactivos y química mineral, con el fin de definir un MODELO PETROGENÉTICO que permita explicar: (a) el origen del magma padre y el subsiguiente proceso de cristalización de las diferentes facies graníticas aflorantes en el área de estudio, (b) identificar el proceso principal que condujo a la PRECONCENTRACIÓN uranífera de los magmas graníticos canalizados en las cizallas magmáticas tardías. Ambos objetivos se complementan y no son compartimentos estancos, ya que el logro combinado de estos objetivos permitirá comprender de mejor manera el proceso geoquímico que gobernó la distribución y concentración del U. De esta manera, se intentará definir un MODELO de PRECONCENTRACIÓN URANÍFERA EXTRAPOLABLE a otras áreas graníticas enriquecidas en uranio, constituyendo una poderosa herramienta de investigación aplicada a la exploración uranífera. En particular, el conocimiento de los recursos uraníferos es parte de una estrategia nacional con vistas a triplicar antes del 2025 la disponibilidad energética actual, en cuyo caso, el uranio constituye la materia prima de las centrales nucleares que se están planificando y en construcción. Por otro lado, la Argentina adhirió al Protocolo de Kioto y, junto a los países adherentes, deben disminuir de manera progresiva el uso de combustibles fósiles (que producen gases de efecto invernadero), reemplazándola por otras fuentes de energía, entre ellas, la ENERGÍA NUCLEAR. Este Proyecto, si bien NO es un Proyecto de exploración y/o prospección minera, es totalmente consistente con la política energética nacional promocionada desde el Ministerio de Planificación Federal, Inversión Pública y Servicios (v. sitio WEB CNEA), que ha invertido, desde 2006, importantes sumas de dinero, en el marco del Programa de Reactivación de la Actividad Nuclear.Los estudios referidos serán conducidos por los Drs. Dahlquist (CONICET-UNC) y Zarco (CNEA) quienes integrarán sus experiencias desarrolladas en el campo de las Ciencias Básicas con aquel logrado en el campo de las Ciencias Aplicadas, respectivamente. Se pretende, por tanto, aplicar conocimientos académicos-científicos a un problema de geología con potencial significado económico-energético, vinculando las instituciones referidas, esto es, CONICET-UNC y CNEA, con el fin de contribuir a la actividad socioeconómica de la provincia de Córdoba en particular y de Argentina en general.Finalmente, convencidos de que el progreso de la Ciencia y el Desarrollo Tecnológico está íntimamente vinculada con la sólida Formación de Recursos Humanos se pretende que este Proyecto contribuya SIGNIFICATIVAMENTE a las investigaciones de Doctorado que iniciará la Geóloga Carina Bello, actual Becaria de la CNEA.
Resumo:
This thesis details the findings of a study into the spatial distribution and speciation of 238U, 226Ra and 228Ra in the soils of the Cronamuck valley, County Donegal . The region lies on the north-eastern edge of the Barnesmore granite and has been the subject of uranium prospecting efforts in the past. The results of the project provide information on the practicability of geostatistical techniques as a means of estimating the spatial distribution of natural radionuclides and provide insight into the behaviour of these nuclides and their modes of occurrence and enrichment in an upland bog environment. The results of the geostatistical survey conducted on the area indicate that the primary control over the levels of the studied nuclides in the soil of the valley is the underlying geology. Isopleth maps of nuclide levels in the valley indicate a predominance of elevated nuclide levels in the samples drawn from the granite region, statistical analysis of the data indicating that levels of the nuclides in samples drawn from the granite are greater than levels drawn from the non-granite region by up to a factor of 4.6 for 238U and 4.9 for 226Ra. Redistribution of the nuclides occurs via drainage systems within the valley, this process being responsible for transport of nuclides away from the granite region resulting in enrichment of nuclides in soils not underlain by the granite. Distribution of the nuclides within the valley is erratic, the effect of drainage f lows on the nuclides resulting in localized enriched areas within the valley. Speciation of the nuclides within one of the enriched areas encountered in the study indicates that enrichment is as a result of saturation of the soil with drainage water containing trace amounts of radionuclides. 238U is primarily held within the labile fractions (exchangeable cat ions + easily oxidisable organics + amorphous iron oxides ) of the soil , 226Ra being associated with the non- labile fractions, most probably the resistant organic material. 228Ra displays a significant occurrence in both the labile and non- labile fractions. The ability of the soil to retain uranium appears to be affected largely by the redox status of the soil, samples drawn from oxidizing environments tending to have little or no uranium in the easily oxidisable and amorphous iron oxide fractions. This loss of uranium from oxidised soil samples is responsible for the elevated 226Ra /238U disequilibrium encountered in the enriched areas of the valley. Analysis of the data indicates that samples displaying elevated 226Ra/238U ratios also exhibit elevated 228Ra/238U ratios indicating a loss of uranium from the samples as opposed to an enrichment of 226Ra.
Resumo:
The new mineral francoisite-(Ce), (Ce,Nd,Ca)[(UO(2))(3)O(OH)(PO(4))(2)]center dot 6H(2)O is the Ce-analog of francoisite-(Nd). It has been discovered simultaneously at the La Creusaz uranium deposit near Les Marecottes in Valais, Switzerland, and at the Number 2 uranium Workings, Radium Ridge near Mt. Painter, Arkaroola area, Northern Flinders Ranges in South Australia. Francoisite-(Ce) is a uranyl-bearing supergene mineral that results from the alteration under oxidative conditions of REE- and U(4+)-bearing hypogene minerals: allanite-(Ce), monazite-(Ce), +/- uraninite at Les Marecottes; monazite-(Ce), ishikawaite-samarskite, and an unknown primary U-mineral at Radium Ridge. The REE composition of francoisite-(Ce) results from a short aqueous transport of REE leached out of primary minerals [most likely monazite-(Ce) at Radium Ridge and allanite-(Ce) at La Creusaz], with fractionation among REE resulting mainly from aqueous transport, with only limited Ce loss due to oxidation to Ce(4+) during transport.
Resumo:
The Great Tohoku-Kanto earthquake and resulting tsunami has brought considerable attention to the issue of the construction of new power plants. We argue in this paper, nuclear power is not a sustainable solution to energy problems. First, we explore the stock of uranium-235 and the different schemes developed by the nuclear power industry to exploit this resource. Second, we show that these methods, fast breeder and MOX fuel reactors, are not feasible. Third, we show that the argument that nuclear energy can be used to reduce CO2 emissions is false: the emissions from the increased water evaporation from nuclear power generation must be accounted for. In the case of Japan, water from nuclear power plants is drained into the surrounding sea, raising the water temperature which has an adverse affect on the immediate ecosystem, as well as increasing CO2 emissions from increased water evaporation from the sea. Next, a short exercise is used to show that nuclear power is not even needed to meet consumer demand in Japan. Such an exercise should be performed for any country considering the construction of additional nuclear power plants. Lastly, the paper is concluded with a discussion of the implications of our findings.