996 resultados para upper solutions
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
We give conditions on f involving pairs of discrete lower and discrete upper solutions which lead to the existence of at least three solutions of the discrete two-point boundary value problem yk+1 - 2yk + yk-1 + f (k, yk, vk) = 0, for k = 1,..., n - 1, y0 = 0 = yn,, where f is continuous and vk = yk - yk-1, for k = 1,..., n. In the special case f (k, t, p) = f (t) greater than or equal to 0, we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and Peterson and are in the spirit of our results for the continuous analogue. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Error condition detected We consider discrete two-point boundary value problems of the form D-2 y(k+1) = f (kh, y(k), D y(k)), for k = 1,...,n - 1, (0,0) = G((y(0),y(n));(Dy-1,Dy-n)), where Dy-k = (y(k) - Yk-I)/h and h = 1/n. This arises as a finite difference approximation to y" = f(x,y,y'), x is an element of [0,1], (0,0) = G((y(0),y(1));(y'(0),y'(1))). We assume that f and G = (g(0), g(1)) are continuous and fully nonlinear, that there exist pairs of strict lower and strict upper solutions for the continuous problem, and that f and G satisfy additional assumptions that are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. Under these assumptions we show that there are at least three distinct solutions of the discrete approximation which approximate solutions to the continuous problem as the grid size, h, goes to 0. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.
Resumo:
n this paper we make an exhaustive study of the fourth order linear operator u((4)) + M u coupled with the clamped beam conditions u(0) = u(1) = u'(0) = u'(1) = 0. We obtain the exact values on the real parameter M for which this operator satisfies an anti-maximum principle. Such a property is equivalent to the fact that the related Green's function is nonnegative in [0, 1] x [0, 1]. When M < 0 we obtain the best estimate by means of the spectral theory and for M > 0 we attain the optimal value by studying the oscillation properties of the solutions of the homogeneous equation u((4)) + M u = 0. By using the method of lower and upper solutions we deduce the existence of solutions for nonlinear problems coupled with this boundary conditions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we consider the second-order discontinuous equation in the real line, u′′(t)−ku(t)=f(t,u(t),u′(t)),a.e.t∈R, with k>0 and f:R3→R an L1 -Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.
Resumo:
We prove existence, uniqueness, and stability of solutions of the prescribed curvature problem (u'/root 1 + u'(2))' = au - b/root 1 + u'(2) in [0, 1], u'(0) = u(1) = 0, for any given a > 0 and b > 0. We also develop a linear monotone iterative scheme for approximating the solution. This equation has been proposed as a model of the corneal shape in the recent paper (Okrasinski and Plociniczak in Nonlinear Anal., Real World Appl. 13:1498-1505, 2012), where a simplified version obtained by partial linearization has been investigated.
Resumo:
To test a mathematical model for measuring blinking kinematics. Spontaneous and reflex blinks of 23 healthy subjects were recorded with two different temporal resolutions. A magnetic search coil was used to record 77 blinks sampled at 200 Hz and 2 kHz in 13 subjects. A video system with low temporal resolution (30 Hz) was employed to register 60 blinks of 10 other subjects. The experimental data points were fitted with a model that assumes that the upper eyelid movement can be divided into two parts: an impulsive accelerated motion followed by a damped harmonic oscillation. All spontaneous and reflex blinks, including those recorded with low resolution, were well fitted by the model with a median coefficient of determination of 0.990. No significant difference was observed when the parameters of the blinks were estimated with the under-damped or critically damped solutions of the harmonic oscillator. On the other hand, the over-damped solution was not applicable to fit any movement. There was good agreement between the model and numerical estimation of the amplitude but not of maximum velocity. Spontaneous and reflex blinks can be mathematically described as consisting of two different phases. The down-phase is mainly an accelerated movement followed by a short time that represents the initial part of the damped harmonic oscillation. The latter is entirely responsible for the up-phase of the movement. Depending on the instantaneous characteristics of each movement, the under-damped or critically damped oscillation is better suited to describe the second phase of the blink. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE. To establish the relationship between upper eyelid saccades and upper eyelid pursuit movements. METHODS. Upper eyelid saccades and periodic sinusoidal upper eyelid pursuit movements were recorded in a sample of controls and patients with Graves upper eyelid retraction. A video-computerized system was used to register both types of movements that accompanied 60 of eye rotation across the upper and lower hemifields. The forced harmonic oscillator model was used to fit saccadic and pursuit movements. RESULTS. Mean mid-pupil eyelid distance for the Graves patients (6.6 +/- 1.1 mm) was significantly higher than for the controls (4.6 +/- 0.8 mm; t = 7.18; P < 0.00001). Despite the difference in the upper eyelid resting position, saccades and pursuit eyelid movements of both groups were extremely well fitted by underdamped solutions and steady forced solutions of the harmonic oscillator model, respectively. For the controls, the amplitude of the pursuit movements was well correlated with the upward and downward saccades. The amplitude of the eyelid movements of the Graves patients (saccades and pursuit) was significantly reduced compared with that of the controls. CONCLUSIONS. Saccadic and pursuit movements of the upper eyelid can be described by the harmonic oscillator model. In healthy subjects and Graves patients, the amplitude of pursuit lid movements is correlated to the saccade amplitude. Pursuit eyelid movements are more difficult to register than saccades, and their measurements do not allow clear separation of the relaxation and contraction properties of the upper eyelid retractors.
Resumo:
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the operational safety. These high criticality systems require strict compliance with the offline predicted task execution time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance of this work.
Resumo:
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently
Resumo:
Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. L'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Récemment, l?eau liquide a été décrite comme une structure formée d?un réseau aléatoire de liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure à basse température, certaines liaisons hydrogènes sont détruites ce qui est énergétiquement défavorable. Les molécules d?eau s?arrangent alors autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l?eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise les liaisons hydrogènes. Maintenant, la dissolution des particules devient énergétiquement défavorable, et les particules se séparent de l?eau en formant des agrégats qui minimisent leur surface exposée à l?eau. Pourtant, à très haute température, les effets entropiques deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d?eau. En utilisant un modèle basé sur ces changements de structure formée par des liaisons hydrogènes j?ai pu reproduire les phénomènes principaux liés à l?hydrophobicité. J?ai trouvé une région de coexistence de deux phases entre les températures critiques inférieure et supérieure de solubilité, dans laquelle les particules hydrophobes s?agrègent. En dehors de cette région, les particules sont dissoutes dans l?eau. J?ai démontré que l?interaction hydrophobe est décrite par un modèle qui prend uniquement en compte les changements de structure de l?eau liquide en présence d?une particule hydrophobe, plutôt que les interactions directes entre les particules. Encouragée par ces résultats prometteurs, j?ai étudié des solutions aqueuses de particules hydrophobes en présence de co-solvants cosmotropiques et chaotropiques. Ce sont des substances qui stabilisent ou déstabilisent les agrégats de particules hydrophobes. La présence de ces substances peut être incluse dans le modèle en décrivant leur effet sur la structure de l?eau. J?ai pu reproduire la concentration élevée de co-solvants chaotropiques dans le voisinage immédiat de la particule, et l?effet inverse dans le cas de co-solvants cosmotropiques. Ce changement de concentration du co-solvant à proximité de particules hydrophobes est la cause principale de son effet sur la solubilité des particules hydrophobes. J?ai démontré que le modèle adapté prédit correctement les effets implicites des co-solvants sur les interactions de plusieurs corps entre les particules hydrophobes. En outre, j?ai étendu le modèle à la description de particules amphiphiles comme des lipides. J?ai trouvé la formation de différents types de micelles en fonction de la distribution des regions hydrophobes à la surface des particules. L?hydrophobicité reste également un sujet controversé en science des protéines. J?ai défini une nouvelle échelle d?hydrophobicité pour les acides aminés qui forment des protéines, basée sur leurs surfaces exposées à l?eau dans des protéines natives. Cette échelle permet une comparaison meilleure entre les expériences et les résultats théoriques. Ainsi, le modèle développé dans mon travail contribue à mieux comprendre les solutions aqueuses de particules hydrophobes. Je pense que les résultats analytiques et numériques obtenus éclaircissent en partie les processus physiques qui sont à la base de l?interaction hydrophobe.<br/><br/>Despite the importance of water in our daily lives, some of its properties remain unexplained. Indeed, the interactions of water with organic particles are investigated in research groups all over the world, but controversy still surrounds many aspects of their description. In my work I have tried to understand these interactions on a molecular level using both analytical and numerical methods. Recent investigations describe liquid water as random network formed by hydrogen bonds. The insertion of a hydrophobic particle at low temperature breaks some of the hydrogen bonds, which is energetically unfavorable. The water molecules, however, rearrange in a cage-like structure around the solute particle. Even stronger hydrogen bonds are formed between water molecules, and thus the solute particles are soluble. At higher temperatures, this strict ordering is disrupted by thermal movements, and the solution of particles becomes unfavorable. They minimize their exposed surface to water by aggregating. At even higher temperatures, entropy effects become dominant and water and solute particles mix again. Using a model based on these changes in water structure I have reproduced the essential phenomena connected to hydrophobicity. These include an upper and a lower critical solution temperature, which define temperature and density ranges in which aggregation occurs. Outside of this region the solute particles are soluble in water. Because I was able to demonstrate that the simple mixture model contains implicitly many-body interactions between the solute molecules, I feel that the study contributes to an important advance in the qualitative understanding of the hydrophobic effect. I have also studied the aggregation of hydrophobic particles in aqueous solutions in the presence of cosolvents. Here I have demonstrated that the important features of the destabilizing effect of chaotropic cosolvents on hydrophobic aggregates may be described within the same two-state model, with adaptations to focus on the ability of such substances to alter the structure of water. The relevant phenomena include a significant enhancement of the solubility of non-polar solute particles and preferential binding of chaotropic substances to solute molecules. In a similar fashion, I have analyzed the stabilizing effect of kosmotropic cosolvents in these solutions. Including the ability of kosmotropic substances to enhance the structure of liquid water, leads to reduced solubility, larger aggregation regime and the preferential exclusion of the cosolvent from the hydration shell of hydrophobic solute particles. I have further adapted the MLG model to include the solvation of amphiphilic solute particles in water, by allowing different distributions of hydrophobic regions at the molecular surface, I have found aggregation of the amphiphiles, and formation of various types of micelle as a function of the hydrophobicity pattern. I have demonstrated that certain features of micelle formation may be reproduced by the adapted model to describe alterations of water structure near different surface regions of the dissolved amphiphiles. Hydrophobicity remains a controversial quantity also in protein science. Based on the surface exposure of the 20 amino-acids in native proteins I have defined the a new hydrophobicity scale, which may lead to an improvement in the comparison of experimental data with the results from theoretical HP models. Overall, I have shown that the primary features of the hydrophobic interaction in aqueous solutions may be captured within a model which focuses on alterations in water structure around non-polar solute particles. The results obtained within this model may illuminate the processes underlying the hydrophobic interaction.<br/><br/>La vie sur notre planète a commencé dans l'eau et ne pourrait pas exister en son absence : les cellules des animaux et des plantes contiennent jusqu'à 95% d'eau. Malgré son importance dans notre vie de tous les jours, certaines propriétés de l?eau restent inexpliquées. En particulier, l'étude des interactions entre l'eau et les particules organiques occupe des groupes de recherche dans le monde entier et est loin d'être finie. Dans mon travail j'ai essayé de comprendre, au niveau moléculaire, ces interactions importantes pour la vie. J'ai utilisé pour cela un modèle simple de l'eau pour décrire des solutions aqueuses de différentes particules. Bien que l?eau soit généralement un bon solvant, un grand groupe de molécules, appelées molécules hydrophobes (du grecque "hydro"="eau" et "phobia"="peur"), n'est pas facilement soluble dans l'eau. Ces particules hydrophobes essayent d'éviter le contact avec l'eau, et forment donc un agrégat pour minimiser leur surface exposée à l'eau. Cette force entre les particules est appelée interaction hydrophobe, et les mécanismes physiques qui conduisent à ces interactions ne sont pas bien compris à l'heure actuelle. Dans mon étude j'ai décrit l'effet des particules hydrophobes sur l'eau liquide. L'objectif était d'éclaircir le mécanisme de l'interaction hydrophobe qui est fondamentale pour la formation des membranes et le fonctionnement des processus biologiques dans notre corps. Récemment, l'eau liquide a été décrite comme un réseau aléatoire formé par des liaisons hydrogènes. En introduisant une particule hydrophobe dans cette structure, certaines liaisons hydrogènes sont détruites tandis que les molécules d'eau s'arrangent autour de cette particule en formant une cage qui permet de récupérer des liaisons hydrogènes (entre molécules d?eau) encore plus fortes : les particules sont alors solubles dans l'eau. A des températures plus élevées, l?agitation thermique des molécules devient importante et brise la structure de cage autour des particules hydrophobes. Maintenant, la dissolution des particules devient défavorable, et les particules se séparent de l'eau en formant deux phases. A très haute température, les mouvements thermiques dans le système deviennent tellement forts que les particules se mélangent de nouveau avec les molécules d'eau. A l'aide d'un modèle qui décrit le système en termes de restructuration dans l'eau liquide, j'ai réussi à reproduire les phénomènes physiques liés à l?hydrophobicité. J'ai démontré que les interactions hydrophobes entre plusieurs particules peuvent être exprimées dans un modèle qui prend uniquement en compte les liaisons hydrogènes entre les molécules d'eau. Encouragée par ces résultats prometteurs, j'ai inclus dans mon modèle des substances fréquemment utilisées pour stabiliser ou déstabiliser des solutions aqueuses de particules hydrophobes. J'ai réussi à reproduire les effets dûs à la présence de ces substances. De plus, j'ai pu décrire la formation de micelles par des particules amphiphiles comme des lipides dont la surface est partiellement hydrophobe et partiellement hydrophile ("hydro-phile"="aime l'eau"), ainsi que le repliement des protéines dû à l'hydrophobicité, qui garantit le fonctionnement correct des processus biologiques de notre corps. Dans mes études futures je poursuivrai l'étude des solutions aqueuses de différentes particules en utilisant les techniques acquises pendant mon travail de thèse, et en essayant de comprendre les propriétés physiques du liquide le plus important pour notre vie : l'eau.
Resumo:
The starting point of this study is to direct more attention to the teacher and those entrepreneurship education practices taking place in formal school to find out solutions for more effective promotion of entrepreneurship education. For this objective, the strategy-level aims of entrepreneurship education need to be operationalised into measurable and understandable teacher-level practices. Furthermore, to enable the effective development of entrepreneurship education in basic and upper secondary level education, more knowledge is needed of the state of affairs of entrepreneurship education in teaching. The purpose of the study is to increase the level of understanding of teachers’ entrepreneurship education practices, and through this to develop entrepreneurship education. This study builds on the literature on entrepreneurship education and especially those elements referring to the aims, resources, benefits, methods, and practises of entrepreneurship education. The study comprises five articles highlighting teachers’ role in entrepreneurship education. In the first article the concept of entrepreneurship and the teachers role in reflection upon his/hers approaches to entrepreneurship education are considered. The second article provides a detailed analysis of the process of developing a measurement tool to depict the teachers’ activities in entrepreneurship education. The next three articles highlight the teachers’ role in directing the entrepreneurship education in basic and upper secondary level education. Furthermore, they analyse the relationship between the entrepreneurship education practises and the teachers’ background characteristics. The results of the study suggest a wide range of conclusions and implications. First, in spite of many outspoken aims connected to entrepreneurship education, teachers have not set any aims for themselves. Additionally, aims and results seem to mix. However, it is possible to develop teachers’ target orientation by supporting their reflection skills, and through measurement and evaluation increase their understanding of their own practices. Second, applying a participatory action process it is possible to operationalise teachers’entrepreneurship education practices. It is central to include the practitioners’ perspective in the development of measures to make sure that the concepts and aims of entrepreneurship education are understood. Third, teachers’ demographic or tenure-related background characteristics do not affect their entrepreneurship education practices, but their training related to entrepreneurship education, participation in different school-level or regional planning, and their own capabilities support entrepreneurship education. Fourth, a large number of methods are applied to entrepreneurship education, and the most often used methods were different kinds of discussions, which seem to be an easy, low-threshold way for teachers to include entrepreneurship education regularly in their teaching. Field trips to business enterprises or inviting entrepreneurs to present their work in schools are used fairly seldom. Interestingly, visits outside the school are more common than visitors invited to the school. In line, most of the entrepreneurship education practices take place in a classroom. Therefore it seems to be useful to create and encourage teachers towards more in-depth cooperation with companies (e.g. via joint projects) and to network systematically. Finally, there are plenty of resources available for entrepreneurship education, such as ready-made materials, external stakeholders, support organisations, and learning games, but teachers have utilized them only marginally.