975 resultados para unstable resonator
Resumo:
A planar waveguide laser operating in a negative branch unstable resonator is Q-switched by an acoustooptic mod latorin anew configuration, providing effective, high-speed switching. The laser using a 200-mu m Nd:YAG core, face pumped by 10 laser diode bars, has produced 100-W output in a good beam quality at 100-kHz pulse rate, and 4.5 mJ at lower frequency with 15-ns pulse duration.
Resumo:
Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators is investigated by diffraction methods, taking into account gain saturation, asymmetric pumping, and beam interaction. The influences of pumping uniformity, doping concentration, cavity length and effective Fresnel number are analyzed with respect to output beam quality and pumping efficiency. It is found that good beam quality and high efficiency can be obtained with asymmetric pumping and optimized negative branch confocal unstable resonators. (c) 2005 The Optical Society of Japan.
Resumo:
The far-field intensity distribution (FFID) of a beam generated by a phase-unifying mirror resonator was investigated based on scalar diffraction theory. Attention was paid to the parameters, such as obscuration ratio and reflectivity of the phase-unifying mirror, that determine the FFID. All analyses were limited to the TEM00 fundamental mode. (c) 2005 Optical Society of America.
Resumo:
Multi-mode rate equations have been developed to investigate mode competition in high-power acousto-optically Q-switched planar waveguide lasers. The mode competition arises from coupling effects and temporal losses in the transform between guided modes and free-space propagation. Pulse-to-pulse instability and temporal beam distortions are enlarged by mode competition when the laser works in the multi-mode regime. The influence of parasitic oscillation is also discussed. A Nd:YAG planar waveguide laser has been established with a folded hybrid/unstable resonator. A maximum average power of 83 W with a beam propagation factor M-x(2) x M-y(2) = 1.2 x 1.4 is obtained. The theoretical simulation agrees well with the experimental observation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
对InnoSlab Laser用混合腔的输出光束质量问题从热透镜效应和腔镜的不对准两个方面的影响进行理论分析,并从远场光强分布、远场发散角、光腰半径、光束质量因子M2值和桶中功率曲线等几个角度进行了讨论,特别是离轴非稳腔方向上腔镜倾斜对光束质量的影响,利用M2值和PIB曲线两个参数共同评价非稳腔的光束质量,对目前并无统一标准的非稳腔光束质量评价问题提供了有意义的参考.
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report the experimental results of an unstable ring resonator with 90-deg beam rotation for a kilowatt class chemical oxygen iodine laser (COIL). The distributions of near-field phase and far-field intensity were measured. A beam quality of 1.6 was achieved when the COIL average output power was approximately 5 kW. (C) 1999 Optical Society of America.
Resumo:
A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.
Resumo:
We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.
Resumo:
We develop a method for fabricating very small silica microbubbles having a micrometer-order wall thickness and demonstrate the first optical microbubble resonator. Our method is based on blowing a microbubble using stable radiative CO2 laser heating rather than unstable convective heating in a flame or furnace. Microbubbles are created along a microcapillary and are naturally opened to the input and output microfluidic or gas channels. The demonstrated microbubble resonator has 370 µm diameter, 2 µm wall thickness, and a Q factor exceeding 10. © 2010 Optical Society of America.