991 resultados para unstable ice flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reconstructs the depositional environments that accompanied both ice advance and ice retreat of the last British–Irish Ice Sheet in NE England during the Last Glacial Maximum, and proposes three regional ice-flow phases. The Late Devensian (29–22 cal. ka BP) Tyne Gap Ice Stream initially deposited the Blackhall Till Formation during shelf-edge glaciation (Phase I). This subglacial traction till comprises several related facies, including stratified and laminated diamictons, tectonites, and sand and gravel beds deposited both in subglacial canals and in proglacial streams. Eventually, stagnation of the Tyne Gap Ice Stream led to ice-marginal sedimentation in County Durham (Phase II). During the Dimlington Stadial (21 cal. ka BP), the North Sea Lobe advanced towards the coastline of N Norfolk. This resulted initially in sandur deposition (widespread, tabular sand and gravel; the Peterlee Sand and Gravel Formation; Phase II) and ultimately in deposition of the Horden Till Formation (Phase III), a massive subglacial till. As the North Sea Lobe overrode previous formations, it thrusted and stacked sediments in County Durham, and dammed proglacial lakes between the east-coast ice, the Pennine uplands and the remaining Pennine ice. The North Sea Lobe retreated after Heinrich Event 1 (16 ka). This study highlights the complexity of ice flow during the Late Devensian glaciation of NE England, with changing environmental and oceanic conditions forcing a mobile and sensitive ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reconstruct the timing of ice flow reconfiguration and deglaciation of the Central Alpine Gotthard Pass, Switzerland, using cosmogenic 10Be and in situ14C surface exposure dating. Combined with mapping of glacial erosional markers, exposure ages of bedrock surfaces reveal progressive glacier downwasting from the maximum LGM ice volume and a gradual reorganization of the paleoflow pattern with a southward migration of the ice divide. Exposure ages of ∼16–14 ka (snow corrected) give evidence for continuous early Lateglacial ice cover and indicate that the first deglaciation was contemporaneous with the decay of the large Gschnitz glacier system. In agreement with published ages from other Alpine passes, these data support the concept of large transection glaciers that persisted in the high Alps after the breakdown of the LGM ice masses in the foreland and possibly decayed as late as the onset of the Bølling warming. A younger group of ages around ∼12–13 ka records the timing of deglaciation following local glacier readvance during the Egesen stadial. Glacial erosional features and the distribution of exposure ages consistently imply that Egesen glaciers were of comparatively small volume and were following a topographically controlled paleoflow pattern. Dating of a boulder close to the pass elevation gives a minimum age of 11.1 ± 0.4 ka for final deglaciation by the end of the Younger Dryas. In situ14C data are overall in good agreement with the 10Be ages and confirm continuous exposure throughout the Holocene. However, in situ14C demonstrates that partial surface shielding, e.g. by snow, has to be incorporated in the exposure age calculations and the model of deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast-flowing ice streams discharge most of the ice from the interior of the Antarctic Ice Sheet coastward. Understanding how their tributary organisation is governed and evolves is essential for developing reliable models of the ice sheet's response to climate change. Despite much research on ice-stream mechanics, this problem is unsolved, because the complexity of flow within and across the tributary networks has hardly been interrogated. Here I present the first map of planimetric flow convergence across the ice sheet, calculated from satellite measurements of ice surface velocity, and use it to explore this complexity. The convergence map of Antarctica elucidates how ice-stream tributaries draw ice from the interior. It also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant convergence ripples associated with nonlinear ice rheology and changes in bed topography and friction. Flow convergence on ice-stream tributaries and their feeding zones is markedly uneven, and interspersed with divergence at distances of the order of kilometres. For individual drainage basins as well as the ice sheet as a whole, the range of convergence and divergence decreases systematically with flow speed, implying that fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These properties and the gridded data of convergence and flow-orthonormal strain rate in this archive provide targets for ice- sheet simulations and motivate more research into the origin and dynamics of tributarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined geodetic, geophysical and glaciological in situ measurements are interpreted regarding surface height changes over subglacial Lake Vostok and the local mass balance of the ice sheet at Vostok station. Repeated GPS observations spanning 5 years and long-term surface accumulation data show that the height of the lake surface has not changed over the observation period. The application of the mass conservation equation to purely observational data yields an ice mass balance for Vostok station close to equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00 m/a ± 0.01 m/a. Along the flowline of Vostok Station an extension rate of about 10**-5/a (equivalent to 1 cm/km/a) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm/a along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a "wave train" that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface "waves" are "standing waves" or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure is presented for using a simple flowline model to calculate the fraction of the bed that is thawed beneath present-day ice sheets, and therefore for mapping thawed, frozen, melting and freezing basal thermal zones. The procedure is based on the proposition, easily demonstrated, that variations in surface slope along ice flowlines are due primarily to variations in bed topography and ice-bed coupling, where ice-bed coupling for sheet flow is represented by the basal thawed fraction. This procedure is then applied to the central flowlines of flow bands on the Antarctic ice sheet where accumulation rates, surface elevations and bed topography are mapped with sufficient accuracy, and where sheet flow rather than stream flow prevails. In East Antarctica, the usual condition is a low thawed fraction in subglacial highlands, but a high thawed fraction in subglacial basins and where ice converges on ice streams. This is consistent with a greater depression of the basal melting temperature and a slower rate of conducting basal heat to the surface where ice is thick, and greater basal frictional heat production where ice flow is fast, as expected for steady-state flow. This correlation is reduced or even reversed where steady-state flow has been disrupted recently, notably where ice-stream surges produced the Dibble and Dalton Iceberg Tongues, both of which are now stagnating. In West Antarctica, for ice draining into the Pine Island Bay polynya of the Amundsen Sea, the basal thawed fraction is consistent with a prolonged and ongoing surge of Pine Island Glacier and with a recently initiated surge of Thwaites Glacier. For ice draining into the Ross Ice Shelf, long ice streams extend nearly to the West Antarctic ice divide. Over the rugged bed topography near the ice divide, no correlation consistent with steady-state sheet flow exists between ice thickness and the basal thawed fraction. The bed is wholly thawed beneath ice streams, even where stream flow is slow. This is consistent with ongoing gravitational collapse of ice entering the Ross Sea embayment and with unstable flow in the ice streams.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We estimate the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and the ice flow law. Surface velocities over Gangotri Glacier were estimated using sub-pixel correlation of Landsat TM and ETM+ imagery. Velocities range from similar to 14-85 m a(-1) in the accumulation region to similar to 20-30 ma(-1) near the snout. Depth profiles were calculated using the equation of laminar flow. Thickness varies from similar to 540 m in the upper reaches to similar to 50-60 m near the snout. The volume of the glacier is estimated to be 23.2 +/- 4.2 km(3).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morphometric study of modern ice masses is useful because many reconstructions of glaciers traditionally draw on their shape for guidance Here we analyse data derived from the surface profiles of 200 modern ice masses-valley glaciers icefields ice caps and ice sheets with length scales from 10º to 10³ km-from different parts of the world Four profile attributes are investigated relief span and two parameters C* and C that result from using Nye s (1952) theoretical parabola as a profile descriptor C* and C respectively measure each profile s aspect ratio and steepness and are found to decrease in size and variability with span This dependence quantifies the competing influences of unconstrained spreading behaviour of ice flow and bed topography on the profile shape of ice masses which becomes more parabolic as span Increases (with C* and C tending to low values of 2.5-3.3 m ½) The same data reveal coherent minimum bounds in C* and C for modern ice masses that we develop into two new methods of palaeo glacier reconstruction In the first method glacial limits are known from moraines and the bounds are used to constrain the lowest palaeo ice surface consistent with modern profiles We give an example of applying this method over a three-dimensional glacial landscape in Kamchatka In the second method we test the plausibility of existing reconstructions by comparing their C* and C against the modern minimum bounds Of the 86 published palaeo ice masses that we put to this test 88% are found to be plausible The search for other morphometric constraints will help us formalise glacier reconstructions and reduce their uncertainty and subjectiveness

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report evidence for a major ice stream that operated over the northwestern Canadian Shield in the Keewatin Sector of the Laurentide Ice Sheet during the last deglaciation 9000-8200 (uncalibrated) yr BP. It is reconstructed at 450 km in length, 140 km in width, and had an estimated catchment area of 190000 km. Mapping from satellite imagery reveals a suite of bedforms ('flow-set') characterized by a highly convergent onset zone, abrupt lateral margins, and where flow was presumed to have been fastest, a remarkably coherent pattern of mega-scale glacial lineations with lengths approaching 13 km and elongation ratios in excess of 40:1. Spatial variations in bedform elongation within the flow-set match the expected velocity field of a terrestrial ice stream. The flow pattern does not appear to be steered by topography and its location on the hard bedrock of the Canadian Shield is surprising. A soft sedimentary basin may have influenced ice-stream activity by lubricating the bed over the downstream crystalline bedrock, but it is unlikely that it operated over a pervasively deforming till layer. The location of the ice stream challenges the view that they only arise in deep bedrock troughs or over thick deposits of 'soft' fine-grained sediments. We speculate that fast ice flow may have been triggered when a steep ice sheet surface gradient with high driving stresses contacted a proglacial lake. An increase in velocity through calving could have propagated fast ice flow upstream (in the vicinity of the Keewatin Ice Divide) through a series of thermomechanical feedback mechanisms. It exerted a considerable impact on the Laurentide Ice Sheet, forcing the demise of one of the last major ice centres.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elucidating the controls on the location and vigor of ice streams is crucial to understanding the processes that lead to fast disintegration of ice flows and ice sheets. In the former North American Laurentide ice sheet, ice stream occurrence appears to have been governed by topographic troughs or areas of soft-sediment geology. This paper reports robust evidence of a major paleo-ice stream over the northwestern Canadian Shield, an area previously assumed to be incompatible with fast ice flow because of the low relief and relatively hard bedrock. A coherent pattern of subglacial bedforms (drumlins and megascalle glacial lineations) demarcates the ice stream flow set, which exhibits a convergent onset zone, a narrow main trunk with abrupt lateral margins, and a lobate terminus. Variations in bedform elongation ratio within the flow set match theoretical expectations of ice velocity. In the center of the ice stream, extremely parallel megascalle glacial lineations tens of kilometers long with elongation ratios in excess of 40:1 attest to a single episode of rapid ice flow. We conclude that while bed properties are likely to be influential in determining the occurrence and vigor of ice streams, contrary to established views, widespread soft-bed geology is not an essential requirement for those ice streams without topographic control. We speculate that the ice stream acted as a release valve on ice-sheet mass balance and was initiated by the presence of a proglacial lake that destabilized the ice-sheet margin and propagated fast ice flow through a series of thermomechanical feedbacks involving ice flow and temperature.