824 resultados para unit roots
Resumo:
This study addresses the issue of the presence of a unit root on the growth rate estimation by the least-squares approach. We argue that when the log of a variable contains a unit root, i.e., it is not stationary then the growth rate estimate from the log-linear trend model is not a valid representation of the actual growth of the series. In fact, under such a situation, we show that the growth of the series is the cumulative impact of a stochastic process. As such the growth estimate from such a model is just a spurious representation of the actual growth of the series, which we refer to as a “pseudo growth rate”. Hence such an estimate should be interpreted with caution. On the other hand, we highlight that the statistical representation of a series as containing a unit root is not easy to separate from an alternative description which represents the series as fundamentally deterministic (no unit root) but containing a structural break. In search of a way around this, our study presents a survey of both the theoretical and empirical literature on unit root tests that takes into account possible structural breaks. We show that when a series is trendstationary with breaks, it is possible to use the log-linear trend model to obtain well defined estimates of growth rates for sub-periods which are valid representations of the actual growth of the series. Finally, to highlight the above issues, we carry out an empirical application whereby we estimate meaningful growth rates of real wages per worker for 51 industries from the organised manufacturing sector in India for the period 1973-2003, which are not only unbiased but also asymptotically efficient. We use these growth rate estimates to highlight the evolving inter-industry wage structure in India.
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
In this paper we assume inflation rates in European Union countries may in fact be fractionally integrated. Given this assumption, we obtain estimations of the order of integration by means a method based on wavelets coefficients. Finally, results obtained allow reject the unit root hypothesis on inflation rates. It means that a random shock on the rate of inflation in these countries has transitory effects that gradually diminish with the passage of time, that this, said shock hasn¿t a permanent effect on future values of inflation rates
Resumo:
Many key economic and financial series are bounded either by construction or through policy controls. Conventional unit root tests are potentially unreliable in the presence of bounds, since they tend to over-reject the null hypothesis of a unit root, even asymptotically. So far, very little work has been undertaken to develop unit root tests which can be applied to bounded time series. In this paper we address this gap in the literature by proposing unit root tests which are valid in the presence of bounds. We present new augmented Dickey–Fuller type tests as well as new versions of the modified ‘M’ tests developed by Ng and Perron [Ng, S., Perron, P., 2001. LAG length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554] and demonstrate how these tests, combined with a simulation-based method to retrieve the relevant critical values, make it possible to control size asymptotically. A Monte Carlo study suggests that the proposed tests perform well in finite samples. Moreover, the tests outperform the Phillips–Perron type tests originally proposed in Cavaliere [Cavaliere, G., 2005. Limited time series with a unit root. Econometric Theory 21, 907–945]. An illustrative application to U.S. interest rate data is provided
Resumo:
This paper generalizes the HEGY-type test to detect seasonal unit roots in data at any frequency, based on the seasonal unit root tests in univariate time series by Hylleberg, Engle, Granger and Yoo (1990). We introduce the seasonal unit roots at first, and then derive the mechanism of the HEGY-type test for data with any frequency. Thereafter we provide the asymptotic distributions of our test statistics when different test regressions are employed. We find that the F-statistics for testing conjugation unit roots have the same asymptotic distributions. Then we compute the finite-sample and asymptotic critical values for daily and hourly data by a Monte Carlo method. The power and size properties of our test for hourly data is investigated, and we find that including lag augmentations in auxiliary regression without lag elimination have the smallest size distortion and tests with seasonal dummies included in auxiliary regression have more power than the tests without seasonal dummies. At last we apply the our test to hourly wind power production data in Sweden and shows there are no seasonal unit roots in the series.
Testing for Seasonal Unit Roots when Residuals Contain Serial Correlations under HEGY Test Framework
Resumo:
This paper introduces a corrected test statistic for testing seasonal unit roots when residuals contain serial correlations, based on the HEGY test proposed by Hylleberg,Engle, Granger and Yoo (1990). The serial correlations in the residuals of test regressionare accommodated by making corrections to the commonly used HEGY t statistics. Theasymptotic distributions of the corrected t statistics are free from nuisance parameters.The size and power properties of the corrected statistics for quarterly and montly data are investigated. Based on our simulations, the corrected statistics for monthly data havemore power compared with the commonly used HEGY test statistics, but they also have size distortions when there are strong negative seasonal correlations in the residuals.
Resumo:
li consumption is log-Normal and is decomposed into a linear deterministic trend and a stationary cycle, a surprising result in business-cycle research is that the welfare gains of eliminating uncertainty are relatively small. A possible problem with such calculations is the dichotomy between the trend and the cyclical components of consumption. In this paper, we abandon this dichotomy in two ways. First, we decompose consumption into a deterministic trend, a stochastic trend, and a stationary cyclical component, calculating the welfare gains of cycle smoothing. Calculations are carried forward only after a careful discussion of the limitations of macroeconomic policy. Second, still under the stochastic-trend model, we incorporate a variable slope for consumption depending negatively on the overall volatility in the economy. Results are obtained for a variety of preference parameterizations, parameter values, and different macroeconomic-policy goals. They show that, once the dichotomy in the decomposition in consumption is abandoned, the welfare gains of cycle smoothing may be substantial, especially due to the volatility effect.
Resumo:
We propose a nonlinear heterogeneous panel unit root test for testing the null hypothesis of unit-roots processes against the alternative that allows a proportion of units to be generated by globally stationary ESTAR processes and a remaining non-zero proportion to be generated by unit root processes. The proposed test is simple to implement and accommodates cross sectional dependence. We show that the distribution of the test statistic is free of nuisance parameters as (N, T) −! 1. Monte Carlo simulation shows that our test holds correct size and under the hypothesis that data are generated by globally stationary ESTAR processes has a better power than the recent test proposed in Pesaran [2007]. Various applications are provided.
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
Empirical studies have shown little evidence to support the presence of all unit roots present in the $^{\Delta_4}$ filter in quarterly seasonal time series. This paper analyses the performance of the Hylleberg, Engle, Granger and Yoo (1990) (HEGY) procedure when the roots under the null are not all present. We exploit the Vector of Quarters representation and cointegration relationship between the quarters when factors $(1-L),(1+L),\bigg(1+L^2\bigg),\bigg(1-L^2\bigg) y \bigg(1+L+L^2+L^3\bigg)$ are a source of nonstationarity in a process in order to obtain the distribution of tests of the HEGY procedure when the underlying processes have a root at the zero, Nyquist frequency, two complex conjugates of frequency $^{\pi/2}$ and two combinations of the previous cases. We show both theoretically and through a Monte-Carlo analysis that the t-ratios $^{t_{{\hat\pi}_1}}$ and $^{t_{{\hat\pi}_2}}$ and the F-type tests used in the HEGY procedure have the same distribution as under the null of a seasonal random walk when the root(s) is/are present, although this is not the case for the t-ratio tests associated with unit roots at frequency $^{\pi/2}$.
Resumo:
This paper studies testing for a unit root for large n and T panels in which the cross-sectional units are correlated. To model this cross-sectional correlation, we assume that the data is generated by an unknown number of unobservable common factors. We propose unit root tests in this environment and derive their (Gaussian) asymptotic distribution under the null hypothesis of a unit root and local alternatives. We show that these tests have significant asymptotic power when the model has no incidental trends. However, when there are incidental trends in the model and it is necessary to remove heterogeneous deterministic components, we show that these tests have no power against the same local alternatives. Through Monte Carlo simulations, we provide evidence on the finite sample properties of these new tests.