899 resultados para uncertanin nonholonomic dynamic system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sliding mode approach and the multi-step control strategy are exploited to propose a stabilizing controller for uncertain nonholonomic dynamic systems with bounded inputs. This controller can stabilize the system to an arbitrarily small neighborhood about its equilibrium in a finite time .Its application to a nonholonomic wheeled mobile robot is described. Simulation result shows that the proposed controller is effective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several analytical methods for Dynamic System Optimum (DSO) assignment have been proposed but they are basically classified into two kinds. This chapter attempts to establish DSO by equilbrating the path dynamic marginal time (DMT). The authors analyze the path DMT for a single path with tandem bottlenecks and showed that the path DMT is not the simple summation of DMT associated with each bottleneck along the path. Next, the authors examined the DMT of several paths passing through a common bottleneck. It is shown that the externality at the bottleneck is shared by the paths in proportion to their demand from the current time until the queue vanishes. This share of the externality is caused by the departure rate shift under first in first out (FIFO) and the externality propagates to the downstream bottlenecks. However, the externalities propagates to the downstream are calculated out if downstream bottlenecks exist. Therefore, the authors concluded that the path DMT can be evaluated without considering the propagation of the externalities, but just as in the evaluation of the path DMT for a single path passing through a series of bottlenecks between the origin and destination. Based on the DMT analysis, the authors finally proposed a heuristic solution algorithm and verified it by comparing the numerical solution with the analytical one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel form of nonlinear stochastic filtering based on an iterative evaluation of a Kalman-like gain matrix computed within a Monte Carlo scheme as suggested by the form of the parent equation of nonlinear filtering (Kushner-Stratonovich equation) and retains the simplicity of implementation of an ensemble Kalman filter (EnKF). The numerical results, presently obtained via EnKF-like simulations with or without a reduced-rank unscented transformation, clearly indicate remarkably superior filter convergence and accuracy vis-a-vis most available filtering schemes and eminent applicability of the methods to higher dimensional dynamic system identification problems of engineering interest. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lewis proposes "reconceptualization" (p. 1) of how to link the psychology and neurobiology of emotion and cognitive-emotional interactions. His main proposed themes have actually been actively and quantitatively developed in the neural modeling literature for over thirty years. This commentary summarizes some of these themes and points to areas of particularly active research in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent decade, the request for structural health monitoring expertise increased exponentially in the United States. The aging issues that most of the transportation structures are experiencing can put in serious jeopardy the economic system of a region as well as of a country. At the same time, the monitoring of structures is a central topic of discussion in Europe, where the preservation of historical buildings has been addressed over the last four centuries. More recently, various concerns arose about security performance of civil structures after tragic events such the 9/11 or the 2011 Japan earthquake: engineers looks for a design able to resist exceptional loadings due to earthquakes, hurricanes and terrorist attacks. After events of such a kind, the assessment of the remaining life of the structure is at least as important as the initial performance design. Consequently, it appears very clear that the introduction of reliable and accessible damage assessment techniques is crucial for the localization of issues and for a correct and immediate rehabilitation. The System Identification is a branch of the more general Control Theory. In Civil Engineering, this field addresses the techniques needed to find mechanical characteristics as the stiffness or the mass starting from the signals captured by sensors. The objective of the Dynamic Structural Identification (DSI) is to define, starting from experimental measurements, the modal fundamental parameters of a generic structure in order to characterize, via a mathematical model, the dynamic behavior. The knowledge of these parameters is helpful in the Model Updating procedure, that permits to define corrected theoretical models through experimental validation. The main aim of this technique is to minimize the differences between the theoretical model results and in situ measurements of dynamic data. Therefore, the new model becomes a very effective control practice when it comes to rehabilitation of structures or damage assessment. The instrumentation of a whole structure is an unfeasible procedure sometimes because of the high cost involved or, sometimes, because it’s not possible to physically reach each point of the structure. Therefore, numerous scholars have been trying to address this problem. In general two are the main involved methods. Since the limited number of sensors, in a first case, it’s possible to gather time histories only for some locations, then to move the instruments to another location and replay the procedure. Otherwise, if the number of sensors is enough and the structure does not present a complicate geometry, it’s usually sufficient to detect only the principal first modes. This two problems are well presented in the works of Balsamo [1] for the application to a simple system and Jun [2] for the analysis of system with a limited number of sensors. Once the system identification has been carried, it is possible to access the actual system characteristics. A frequent practice is to create an updated FEM model and assess whether the structure fulfills or not the requested functions. Once again the objective of this work is to present a general methodology to analyze big structure using a limited number of instrumentation and at the same time, obtaining the most information about an identified structure without recalling methodologies of difficult interpretation. A general framework of the state space identification procedure via OKID/ERA algorithm is developed and implemented in Matlab. Then, some simple examples are proposed to highlight the principal characteristics and advantage of this methodology. A new algebraic manipulation for a prolific use of substructuring results is developed and implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Aeronautical Research Laboratory, Contract No. AF 33(616)-2797, Project 7060."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

对于一类具有轮式移动机构的非完整动力学系统,本文通过建立人工场的方法来实现其位姿镇定、轨迹跟踪和路径跟踪等控制问题。人工场用于导向和控制方向角,而通过辅助的线速度控制以获取最佳收敛路径。控制器设计中同时兼顾动力学扰动及实际系统速度和输出力矩的饱和限制,所得控制器对于跟踪问题仅需知道期望位姿,而且结构简单、鲁棒性强、便于实现。