174 resultados para ultrawideband (UWB)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose a novel equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) channels characterized by severe delay spreads. The proposed equalizer is based on reactive tabu search (RTS), which is a heuristic originally designed to obtain approximate solutions to combinatorial optimization problems. The proposed RTS equalizer is shown to perform increasingly better for increasing number of multipath components (MPC), and achieve near maximum likelihood (ML) performance for large number of MPCs at a much less complexity than that of the ML detector. The proposed RTS equalizer is shown to perform close to within 0.4 dB of single-input multiple-output AWGN performance at 10(-3) uncoded BER on a severely delay-spread UWB MIMO channel with 48 equal-energy MPCs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we present a belief propagation (BP) based equalizer for ultrawideband (UWB) multiple-input multiple-output (MIMO) inter-symbol interference (ISI) channels characterized by severe delay spreads. We employ a Markov random field (MRF) graphical model of the system on which we carry out message passing. The proposed BP equalizer is shown to perform increasingly closer to optimal performance for increasing number of multipath components (MPC) at a much lesser complexity than that of the optimum equalizer. The proposed equalizer performs close to within 0.25 dB of SISO AWGN performance at 10-3 bit error rate on a severely delay-spread MIMO-ISI channel with 20 equal-energy MPCs. We point out that, although MIMO/UWB systems are characterized by fully/densely connected graphical models, the following two proposed features are instrumental in achieving near-optimal performance for large number of MPCs at low complexities: i) use of pairwise compatibility functions in densely connected MRFs, and ii) use of damping of messages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pulse design is investigated for time-reversal (TR) imaging as applied to ultrawideband (UWB) breast cancer detection. Earlier it has been shown that a suitably-designed UWB pulse may help to improve imaging performance for a single-tumor breast phantom with predetermined lesion properties. The current work considers the following more general and practical situations: presence of multiple malignancies with unknown tumor size and dielectric properties. Four pulse selection criteria are proposed with each focusing on one of the following aspects: eliminating signal clutter generated by tissue inhomogeneities, canceling mutual interference among tumors, improving image resolution, and suppressing artifacts created by sidelobe of the target response. By applying the proposed criteria, the shape parameters of UWB waveforms with desirable characteristics are identified through search of all the possible pulses. Simulation example using a numerical breast phantom, comprised of two tumors and structured clutter distribution, demonstrates the effectiveness of the proposed approach. Specifically, a tradeoff between the image resolution and signal-to-clutter contrast (SCC) is observed in terms of selection of the excitation waveforms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nos últimos anos, com o surgimento de novos serviços e equipamentos para o sistema de comunicação móvel com maiores larguras de banda de operação e ocupando espaços cada vez menores, o desenvolvimento de novas antenas de bandas largas e com dimensões pequenas se tornou um dos principais desafios das pesquisas na área de antenas. Neste trabalho, duas estruturas de antenas de bandas largas e dimensões reduzidas foram analisadas e otimizadas. Na primeira parte, a antena filamentar monopolo dobrado (Wire Built-in Folded Monopole Antenna, W-BFMA) foi investigada e teve sua largura de banda otimizada, conectada a linha de alimentação em diferentes impedâncias. Para modelar a estrutura da antena W-BFMA foi usado o método numérico dos momentos (Method of Moments - MoM), e para sua otimização os métodos: paramétrico, hill climbing e algoritmo genético (AG). Programas computacionais baseados na linguagem Matlab foram desenvolvidos para modelagem, otimização e cálculos das principais curvas características da antena W-BFMA. Na segunda parte, duas diferentes configurações de antenas monopolos planos usando a tecnologia de banda ultra-larga (Ultra- Wideband Antenna, UWB) foram investigadas e otimizadas com a ajuda do programa comercial Computer Simulation Technology (CST) Microwave Studio. Ambas as antenas UWB foram alimentadas por uma linha de microfita (microstrip line) na impedância de 50Ω. A antena UWB que apresentou melhor resultado teve o seu protótipo construído, as principais curvas características, tais como: perda de retorno, ganho, distribuição de corrente e diagrama de radiação foram analisadas. Os resultados simulados foram comparados com resultados obtidos experimentalmente.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A planar-spiral antenna to be used in an ultrawideband (UWB) radar system for heart activity monitoring is presented. The antenna, named “twin,” is constituted by two spiral dipoles in a compact structure. The reflection coefficient at the feed point of the dipoles is lower than −8 dB over the 3–12 GHz band, while the two-dipoles coupling is about −20 dB. The radiated beam is perpendicular to the plane of the spiral, so the antenna is wearable and it may be an optimal radiator for a medical UWB radar for heart rate detection. The designed antenna has been also used to check some hypotheses about the UWB radar heart activity detection mechanism. The radiation impedance variation, caused by the thorax vibrations associated with heart activity, seems to be the most likely explanation of the UWB radar operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a novel method to generate ultrawideband (UWB) doublets is proposed and experimentally demonstrated, which is based on exploiting the cross-phase modulation in a semiconductor optical amplifier (SOA). The key component is an integrated SOA Mach-Zehnder interferometer pumped with an optical carrier modulated by a Gaussian pulse. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses by tuning the SOA currents to different values.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose and experimentally demonstrate a novel technique to generate ultrawideband (UWB) doublet pulses by exploiting the cross-phase modulation (XPM) in a semiconductor optical amplifier (SOA). The key component in the proposed system consists on an integrated SOA Mach-Zehnder interferometer (MZI) pumped with a Gaussian pulse modulated optical carrier. The transfer function of the nonlinear conversion process leads to the generation of UWB doublet pulses through the control of the biasing point of the SOA-MZI.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this letter, we propose and experimentally demonstrate a compact, flexible, and scalable ultrawideband (UWB) generator based on the merge of phase-to-intensity conversion and pulse shaping employing an fiber Bragg Grating-based superstructure. Our approach offers the capacity for generating high-order UWB pulses by means of the combination of various low-order derivatives. Moreover, the scheme permits the implementation of binary and multilevel modulation formats. Experimental measurements of the generated UWB pulses, in both time and frequency domain, are presented revealing efficiency and a proper fit in terms of Federal Communications Commission settled standards.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This letter presents signal processing techniques to detect a passive thermal threshold detector based on a chipless time-domain ultrawideband (UWB) radio frequency identification (RFID) tag. The tag is composed by a UWB antenna connected to a transmission line, in turn loaded with a biomorphic thermal switch. The working principle consists of detecting the impedance change of the thermal switch. This change occurs when the temperature exceeds a threshold. A UWB radar is used as the reader. The difference between the actual time sample and a reference signal obtained from the averaging of previous samples is used to determine the switch transition and to mitigate the interferences derived from clutter reflections. A gain compensation function is applied to equalize the attenuation due to propagation loss. An improved method based on the continuous wavelet transform with Morlet wavelet is used to overcome detection problems associated to a low signal-to-noise ratio at the receiver. The average delay profile is used to detect the tag delay. Experimental measurements up to 5 m are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a critical analysis of ultrawideband (UWB) and considers the turbulent journey it has had from the Federal Communications Commission's bandwidth allocation in 2002 to today. It analyzes the standards, the standoffs, and the stalemate in standardization activities and investigates the past and present research and commercial activities in realizing the UWB dream. In this paper, statistical evidence is presented to depict UWB's changing fortunes and is utilized as an indicator of future prominence. This paper reviews some of the opinions and remarks from commentators and analyzes predictions that were made. Finally, it presents possible ways forward to reignite the high-data-rate UWB standardization pursuit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and performance of a stepped slot printed monopole antenna in the ultrawideband is presented in this article. Multiple resonances generated by the stepped slot geometry are matched in the ultrawideband using a modified microstrip feed. The impedance bandwidth (SWR < 2) of the antenna is from 3 to 11 GHz. Radiation patterns are stable and omnidirectional with appreciable gain throughout the band. Performance of the antenna is also analyzed in the time domain, which reveals good pulse handling capabilities. Compact geometry of the antenna allows easy commercial deployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2-element elliptical patch antenna array with a bi-directional radiation pattern has been developed for ultra wideband indoor wireless communications. The array is constructed by means of feeding two omni-directional elliptical patch elements with a 3-section hybrid power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1 - 6 GHz).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.