968 resultados para ultrasound ct
Resumo:
Background The evaluation of the hepatic parenchyma in patients with chronic liver disease is important to assess the extension, localization and relationship with adjacent anatomical structures of possible lesions. This is usually performed with conventional abdominal ultrasound, CT-scan or magnetic resonance imaging. In this context, the feasibility and the safety of intravascular ultrasound in the liver have not been assessed yet. Methods We tested the safety and performance of an intracardiac echography (ICE) catheter applied by a transjugular approach into the hepatic veins in patients with chronic liver disease undergoing hepatic hemodynamic measurements. Results Five patients were enrolled in this pilot study. The insertion of the ICE catheter was possible into the right and middle, but not into the left hepatic vein. The position of the ICE was followed using fluoroscopy and external conventional ultrasound. Accurate imaging of focal hepatic parenchymal lesions, Doppler ultrasound of surrounding blood vessels and assessment of liver surface and ascites were achieved without complications. Conclusions This study demonstrated that a diagnostic approach using an ICE device inserted in the hepatic veins is feasible, safe and well tolerated. However, it remains for the moment only an experimental investigative tool. Whether ICE adds further information regarding parenchymal lesions and associated vascular alterations as compared to other techniques, needs additional investigation.
Resumo:
Pelvic pain is a common indication for ultrasound examinations in female pediatric patients. Many pathological processes affect the female pelvis in childhood. Knowledge of the normal ultrasound appearance of the pelvic organs is the basis for the recognition of pathologic findings. Pelvic pain in children is a nonspecific clinical finding often prompting use of ultrasound. Other indications for pelvic ultrasound in female children include workup of cysts seen on fetal ultrasound, urogenital malformations in newborns, precocious puberty, vaginal discharge or abnormal bleeding, and amenorrhea. Knowledge of differential diagnosis for disease processes of the female pelvic organs is essential. Ultrasound is the imaging modality of choice for evaluating the pediatric female pelvis.
Resumo:
Comparar el resultado de la resonancia magnética en el diagnóstico de apendicitis aguda con el patrón de oro (estudio histopatológico o seguimiento clínico del paciente) con el fin de establecer la utilidad de ésta como prueba diagnóstica y poder incluirla dentro del algoritmo de estudio de esta patología cuando hay sospecha clínica y un resultado negativo o dudoso de la ecografía abdominal
Resumo:
We report on the construction of anatomically realistic three-dimensional in-silico breast phantoms with adjustable sizes, shapes and morphologic features. The concept of multiscale spatial resolution is implemented for generating breast tissue images from multiple modalities. Breast epidermal boundary and subcutaneous fat layer is generated by fitting an ellipsoid and 2nd degree polynomials to reconstructive surgical data and ultrasound imaging data. Intraglandular fat is simulated by randomly distributing and orienting adipose ellipsoids within a fibrous region immediately within the dermal layer. Cooper’s ligaments are simulated as fibrous ellipsoidal shells distributed within the subcutaneous fat layer. Individual ductal lobes are simulated following a random binary tree model which is generated based upon probabilistic branching conditions described by ramification matrices, as originally proposed by Bakic et al [3, 4]. The complete ductal structure of the breast is simulated from multiple lobes that extend from the base of the nipple and branch towards the chest wall. As lobe branching progresses, branches are reduced in height and radius and terminal branches are capped with spherical lobular clusters. Biophysical parameters are mapped onto the complete anatomical model and synthetic multimodal images (Mammography, Ultrasound, CT) are generated for phantoms of different adipose percentages (40%, 50%, 60%, and 70%) and are analytically compared with clinical examples. Results demonstrate that the in-silico breast phantom has applications in imaging performance evaluation and, specifically, great utility for solving image registration issues in multimodality imaging.
Resumo:
Precise focusing is essential for transcranial MRI-guided focused ultrasound (TcMRgFUS) to minimize collateral damage to non-diseased tissues and to achieve temperatures capable of inducing coagulative necrosis at acceptable power deposition levels. CT is usually used for this refocusing but requires a separate study (CT) ahead of the TcMRgFUS procedure. The goal of this study was to determine whether MRI using an appropriate sequence would be a viable alternative to CT for planning ultrasound refocusing in TcMRgFUS. We tested three MRI pulse sequences (3D T1 weighted 3D volume interpolated breath hold examination (VIBE), proton density weighted 3D sampling perfection with applications optimized contrasts using different flip angle evolution and 3D true fast imaging with steady state precision T2-weighted imaging) on patients who have already had a CT scan performed. We made detailed measurements of the calvarial structure based on the MRI data and compared those so-called 'virtual CT' to detailed measurements of the calvarial structure based on the CT data, used as a reference standard. We then loaded both standard and virtual CT in a TcMRgFUS device and compared the calculated phase correction values, as well as the temperature elevation in a phantom. A series of Bland-Altman measurement agreement analyses showed T1 3D VIBE as the optimal MRI sequence, with respect to minimizing the measurement discrepancy between the MRI derived total skull thickness measurement and the CT derived total skull thickness measurement (mean measurement discrepancy: 0.025; 95% CL (-0.22-0.27); p = 0.825). The T1-weighted sequence was also optimal in estimating skull CT density and skull layer thickness. The mean difference between the phase shifts calculated with the standard CT and the virtual CT reconstructed from the T1 dataset was 0.08 ± 1.2 rad on patients and 0.1 ± 0.9 rad on phantom. Compared to the real CT, the MR-based correction showed a 1 °C drop on the maximum temperature elevation in the phantom (7% relative drop). Without any correction, the maximum temperature was down 6 °C (43% relative drop). We have developed an approach that allows for a reconstruction of a virtual CT dataset from MRI to perform phase correction in TcMRgFUS.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 9-12 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. Passing-Bablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
Renal cancer represents accounts for approximately 3% of all adult malignancies with a rising incidence. Incidental diagnosis is mostly based upon ultrasound (US). US and Computed tomography (CT) are the standard imaging modalities for detecting renal cell cancer (RCC). Differentiation between malignant and benign renal tumors is of utmost importance. Contrast enhanced ultrasound (CUS) seems to be a promising new diagnostic option for diagnosis and preoperative treatment planning for patients with renal cancer. It is an additional examination to baseline ultrasound and CT. We report a case of a 37-year-old woman with a papillary renal cell cancer in which CUS helped to differentiate dignity of the tumor. CUS is an additional examination to baseline ultrasound and CT. It is a less invasive technique than contrast enhanced CT and shows even slight tumor blood flow. In addition it may allow a more rapid diagnosis, because of its bedside availability.
Resumo:
OBJECTIVE To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. MATERIAL AND METHODS 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. RESULTS Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). CONCLUSIONS Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.
Resumo:
Over two-thirds of renal masses noted incidentally on abdominal CT scans performed for nonurological indications are most likely renal cell carcinoma (RCC). The prognosis in these instances is often quite favorable, as early diagnosis offers the best hope of a complete cure. We report the identification of a RCC incidentally at endoscopic ultrasound (EUS) while an earlier CT scan of abdomen was negative. The mass was biopsied resulting in a histological confirmation of RCC and successful surgical resection.
Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64
Resumo:
Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective ""CORE-64"" trial (""Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors""). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.
Resumo:
Background: Malignancies of the biliary and pancreatic systems are associated with a poor prognosis. However, ampullary cancer carries a better prognosis and is often diagnosed when curative treatment is still possible. Accurate staging is important for the determination of the most appropriate treatment option. Objectives: (1) To determine the test performance characteristics of EUS and CT in loco-regional staging of ampullary neoplasms, and (2) to determine the impact of CT scan results on the test performance characteristics of EUS. Design and Setting: Prospective single-arm intervention study performed in 2 academic hospitals. Results and Main Outcome Measurements: Thirty-seven patients were screened and 33 staged with EUS and CT A total of 27 patients (13 men; mean age, 69.5 years; mean serum bilirubin level, 12.6 mg/dL) with locally advanced disease completed the protocol with EUS and CT and underwent surgical resection. Tumor classifications were as follows: 2 patients (7.4%), T1 tumors; 13 patients (48.1%), T2 tumors; and 12 patients (44.4%), T3 tumors, as per surgical pathology. Seventeen tumors (62.9%) were classified as NO and 10 (37.1%) as NI. The difference in proportion of correct tumor (74.1% vs 51.8%; P =.15, 95% CI, -0.06-0-50) and lymph node (81.4% vs; 55.5%; P =.07, 95% Cl, -0.01-0.53) staging by EUS and CT, respectively, was not statistically significantly different. However, the strength of tumor (kappa 0.51 vs 0.11) and nodal (kappa 0.59 vs 0.05) agreement with pathology was statistically significantly higher for EUS than for CT (P <.05). EUS was more sensitive and specific than CT for tumor and nodal staging, and the association of CT to EUS data did not improve the final test accuracy Limitation: Low number of T1 tumors. Conclusions: EUS is in accurate diagnostic test and exhibits a high level of agreement with surgical pathology. CT findings do not improve the test performance characteristics of EUS. Therefore, the evaluation for metastatic disease should not be compromised by CT protocols that aim to perform tumor and nodal staging. Further studies to determine the role of specialized CT protocols in patients with ampullary malignancies are needed. (Gastrointest Endosc 2009;70:290-6.)