973 resultados para ultrasonic cavitation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the degassing process of transformer oil with ultrasonic waves, decomposition of the oil was observed. Light hydrocarbons, including methane, ethane, ethylene, acetylene, propane etc, were found to be released continuously from the oil into headspace within a closed vial placed in an ultrasonic field. The gases came from decomposition of hydrocarbon Molecules under cavitation effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Decreasing the constriction size and residence time in hydrodynamic cavitation is predicted to give increased hot spot temperatures at bubble collapse and increased radical formation rate. Cavitation in a 100 x 100 mu m(2) rectangular micro channel and in a circular 750 mu m diameter milli channel has been investigated with computational fluid dynamics software and with imaging and radical production experiments. No radical production has been measured in the micro channel. This is probably because there is no spherically symmetrical collapse of the gas pockets in the channel which yield high hot spot temperatures. The potassium iodide oxidation yield in the presence of chlorohydrocarbons in the milli channel of up to 60 nM min(-1) is comparable to values reported on hydrodynamic cavitation in literature, but lower than values for ultrasonic cavitation. These small constrictions can create high apparent cavitation collapse frequencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To analyze the smear layer and the hybrid layer in noncarious and carious dentin prepared by different cutting instruments and restored with composite resin. Study design: Cavities were randomly prepared in 160 specimens (noncarious and artificial carious dentin) by high-speed diamond tips (KG Sorensen 1013), air abrasion system (Prepstart, Danville Engineering), ultrasonic tip (CVDentus 8.3231-1), and ultrasonic tip associated with ultrasonic cavitation by water for 10 s. Half of the cavities in each group were conditioned with 37% phosphoric acid for 15 s. The amount of smear layer and dentinal tubules present were analyzed using scanning electron microscopy and graded from 0 to 3. Cavities were prepared in another 20 noncarious specimens and 20 carious specimens and restored with adhesive composite resin system. The restorations were hemisected longitudinally and analyzed using scanning electron microscopy to evaluate the hybrid layer and resinous prolongation characteristics, using scores ranging from 1 to 6. Results: The data were statistically analyzed using Kruskal-Wallis and Dunn tests at 5% of significance level. There was evidence that the most efficient smear layer removal was the acid etching in the noncarious dentin and the water ultrasonic cavitation in the carious dentin. The hybrid layer formed on the noncarious and carious dentin prepared by the ultrasonic tip was more regular than in the specimens prepared by high-speed diamond tip, with many resinous prolongations. Conclusion: The ultrasonic tip seems to be a promising tool for carious dentin cavity preparation. Microsc. Res. Tech. 73:597-605, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work described in this thesis has been concerned with exploring the potential uses of ultrasound in Nuclear Magnetic Resonance (NMR) spectroscopy, The NMR spectra of liquids provide detailed structural information that may be deduced from the chemical shifts and spin-spin coupling, that are evident in the narrow resonances, arising from some of the nuclear broadening interactions being reduced to zero. In the solid state, all of the nuclear broadening interactions are present and broad lines in the NMR spectrum are observed. Current techniques employed to reduce the line widths in solids are based on coherent averaging techniques such as MAS NMR1,2 which can remove first order interactions. Recently DOR3 and DAS4 have become available to remove higher order interactions. SINNMR (Sonically Induced Narrowing of the NMR spectra of solids) has been reported by Homer et al5 and developed by Homer and Howard6 to reduce the line widths of solids. The basis of their work is the proposal that a colloidal suspension of solid particles can be made to move like large molecules by using ultrasonic agitation. The advantage of the technique is that the particles move incoherently removing all of the nuclear interactions responsible for broad lines. This thesis describes work on the extension of SINNMR by showing that the line width of 27AI and 11B for the glass Na20/B203/AI203 can be reduced by placing solid particles in a colloidal suspension. Further line width reduction is possible by applying ultrasound, at 2 MHz, of sufficient intensity. It is proposed that a cavitation field is responsible for imparting sufficient rotational motion to the solid particles to partially average the nuclear interactions responsible for broad lines. Rapid stirring of the colloidal suspension generates turbulent flow, however, the motion is insufficient to narrow the line widths for 27AI in the glass. Investigations of sonochemical reactions for in situ rate measurements by NMR have been made. 8y using the Weissler reaction7, it has been shown that ultrasonic cavitation is possible up to 10MHz. Preliminary studies have been carried out into the rate of ultrasonic polymerisation of methylmethacrylate by NMR. Long range order in liquid crystals can imposed when they are aligned in the presence a magnetic field. The degree of alignment can be monitored by NMR using, for example a deuterated solute added to the liquid crystal8. Ultrasonic streaming can then be employed to deflect the directors of the liquid crystal from their equilibrium position, resulting in a change In the NMR spectrum. The angle of deflection has been found for the thermotropic liquid crystal (I35) to be ca, 35° and for the lyotropic (ZLI-1167) to be ca, 20°, Mechanical stirring can used to re- orientate the liquid crystal but was found to give a smaller deflection, In a separate study, that did not use ultrasound, it has been found that the signal to noise ratio of 13C NMR signals can be enhanced by rapidly stirring a Iiquid. Accelerating the diffusion of nuclei out of the coil region enables M0 to be re-established more rapidly than the normal relaxation process. This allows the pulse repetition rate to be reduced without saturating the spin system. The influence of varying the relaxation delay, acquisition time and inter-pulse delay have been studied and parameters optimised. By studying cholesterol the technique was found to be most effective for nuclei with long relaxation times, such as quaternary carbon sites. Key Worde: NMR, Ulf.rasciund, 1,.lqi.fi!:l cryllltalt!h SCll1C1otlemlstryl I!r1hano~d algnflllf

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrasonic acoustic emission (UAE) in trees is often related to collapsing water columns in the flow path as a result of tensions that are too strong (cavitation). However, in a decibel (dB) range below that associated with cavitation, a close relationship was found between UAE intensities and stem radius changes. • UAE was continuously recorded on the stems of mature field-grown trees of Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens) at a dry inner-Alpine site in Switzerland over two seasons. The averaged 20-Hz records were related to microclimatic conditions in air and soil, sap-flow rates and stem-radius fluctuations de-trended for growth (ΔW). • Within a low-dB range (27 ± 1 dB), UAE regularly increased and decreased in a diurnal rhythm in parallel with ΔW on cloudy days and at night. These low-dB emissions were interrupted by UAE abruptly switching between the low-dB range and a high-dB range (36 ± 1 dB) on clear, sunny days, corresponding to the widely supported interpretation of UAE as sound from cavitations. • It is hypothesized that the low-dB signals in drought-stressed trees are caused by respiration and/or cambial growth as these physiological activities are tissue water-content dependent and have been shown to produce courses of CO2 efflux similar to our courses of ΔW and low-dB UAE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In aerosol research, a common approach for the collection of particulate matter (PM) is the use of filters in order to obtain sufficient material to undertake analysis. For subsequent chemical and toxicological analyses, in most of cases the PM needs to be extracted from the filters. Sonication is commonly used to most efficiently extract the PM from the filters. Extraction protocols generally involve 10 - 60 min of sonication. The energy of ultrasonic waves causes the formation and collapse of cavitation bubbles in the solution. Inside the collapsing cavities the localised temperatures and pressures can reach extraordinary values. Although fleeting, such conditions can lead to pyrolysis of the molecules present inside the cavitation bubbles (gases dissolved in the liquid and solvent vapours), which results in the production of free radicals and the generation of new compounds formed by reactions with these free radicals. For example, simple sonication of pure water will result in the formation of detectable levels of hydroxyl radicals. As hydroxyl radicals are recognised as playing key roles as oxidants in the atmosphere the extraction of PM from filters using sonication is therefore problematic. Sonication can result in significant chemical and physical changes to PM through thermal degradation and other reactions. In this article, an overview of sonication technique as used in aerosol research is provided, the capacity for radical generation under these conditions is described and an analysis is given of the impact of sonication-derived free radicals on three molecular probes commonly used by researchers in this field to detect Reactive Oxygen Species in PM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an �ultrasonic nuclei manipulator (UNM)�. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafiltration (UF) of whey is a major membrane based process in the dairy industry. However, commercialization of this application has been limited by membrane fouling, which has a detrimental influence on the permeation rate. There are a number of different chemical and physical cleaning methods currently used for cleaning a fouled membrane. It has been suggested that the cleaning frequency and the severity of such cleaning procedures control the membrane lifetime. The development of an optimal cleaning strategy should therefore have a direct implication on the process economics. Recently, the use of ultrasound has attracted considerable interest as an alternative approach to the conventional methods. In the present study, we have studied the ultrasonic cleaning of polysulfone ultrafiltration membranes fouled with dairy whey solutions. The effects of a number of cleaning process parameters have been examined in the presence of ultrasound and results compared with the conventional operation. Experiments were conducted using a small single sheet membrane unit that was immersed totally within an ultrasonic bath. Results show that ultrasonic cleaning improves the cleaning efficiency under all experimental conditions. The ultrasonic effect is more significant in the absence of surfactant, but is less influenced by temperature and transmembrane pressure. Our results suggest that the ultrasonic energy acts primarily by increasing the turbulence within the cleaning solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We aimed to investigate the naturally occurring horizontal plane movements of a head stabilized in a standard ophthalmic headrest and to analyze their magnitude, velocity, spectral characteristics, and correlation to the cardio pulmonary system. Two custom-made air-coupled highly accurate (±2 μm)ultrasound transducers were used to measure the displacements of the head in different horizontal directions with a sampling frequency of 100 Hz. Synchronously to the head movements, an electrocardiogram (ECG) signal was recorded. Three healthy subjects participated in the study. Frequency analysis of the recorded head movements and their velocities was carried out, and functions of coherence between the two displacements and the ECG signal were calculated. Frequency of respiration and the heartbeat were clearly visible in all recorded head movements. The amplitude of head displacements was typically in the range of ±100 μm. The first harmonic of the heartbeat (in the range of 2–3 Hz), rather than its principal frequency, was found to be the dominant frequency of both head movements and their velocities. Coherence analysis showed high interdependence between the considered signals for frequencies of up to 20 Hz. These findings may contribute to the design of better ophthalmic headrests and should help other studies in the decision making of whether to use a heavy headrest or a bite bar.