13 resultados para tungstates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The course of reaction between cerium(III) nitrate and different sodium tungstates (Na2WO4, Na10W12O41 and Na6W12O39) has been followed by means of pH and conductometric titrations between the reactants at different pH levels, in aqueous and alcoholic media, with each of the reagents alternatively used as titrant. The electrometric experiments provide definite evidence of the formation of normal-Ce2O3.3WO3 and para- 5Ce2O3.36WO3 tungstates of cerium in the vicinity of pH 6.2 and 5.3. The formation of normal tungstate is almost quantitative and the pH titrations offer a simple means for determination of cerium(III) or tungstate solutions at suitable concentrations and pH range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stoichiometry of the polyanions formed by the action of nitric acid on sodium tungstate (< 0.01M) has been studied by means of electrometric techniques involving pH-potentiometric and conductometric titrations. The well defined inflections and breaks in the titration curves provide evidence for the existence of the polyanions, para-W12O41(10-) and meta-W12O39(6-) corresponding to the ratio of H+:WO4(2-) as 7:6 and 9:6 in the pH ranges 5.7-6.0 and 3.6-4.1, respectively. The interaction of lanthanum nitrate with sodium tungstate solutions, at specific pH levels 8.0, 5.9 and 4.0 was also studied by pH and conductometric titrations, in aqueous and alcoholic media, with each of the reagents alternatively used as titrant. The electrometric experiments provide definite evidence of the formation of normal-La2O3.3WO3, para-5La2O3.36WO3 and meta-La2O3.12WO3 tungstates in the vicinity of pH 6.3, 5.0 and 4.2, respectively. Analytical investigations on the precipitates formed confirm the results of the electrometric study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this work was to produce nanosized ceramic materials of the family of the tungstates (tungstates of cerium and strontium), and test them for their catalytic activity in processes involving the transformation of methane (CH4). The methodology used for the synthesis of the ceramic powders involved the complexation combining EDTA-citrate. The materials characterization was performed using simple and differential thermogravimetry, x-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy (EDS). The microstructure analysis was performed using the refinement by the Rietveld method, and the crystallite size and distribution of the materials was elucidate by the Scherrer and Williamson-Hall methods. The conditions of the synthesis process for the three envisaged materials (SrWO4, SrWO4 using tungsten oxide concentrate as raw material, and Ce2(WO4)3) were adjusted to obtain a single phase crystalline material. The catalytic tests were carried out in the presence of methane and synthetic air, which is composed of 21% O2 and 79% N2. The analysis of the conversion of the reaction was done with the aid of an fourier transform infrared device (FTIR). The analysis showed that, structurally, the SrWO4 produced using raw materials of high and poor purity (99% and 92%, respectively) are similar. The ideal parameters of calcination, in the tested range, are temperature of 1000 °C and time of calcination 5 hours. For the Ce2(WO4)3, the ideal calcination time and are temperature 15 hours and 1000°C, respectively. The Williamson-Hall method provided two different distributions for the crystallite size of each material, whose values ranged between the nanometer and micrometer scales. According to method of Scherrer, all materials produced were composed of nanometric crystallites. The analyses of transmission electron microscopy confirmed the results obtained from the Williamson- Hall method for the crystallite size. The EDS showed an atomic composition for the metals in the SrWO4 that was different of the theoretical composition. With respect to the catalytic tests, all materials were found to be catalytically active, but the reaction process should be further studied and optimized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This communication is a report of our initial research to obtain iron tungstate (FeWO4) nanocrystals by the microwave-hydrothermal method at 170 degrees C for 45 min. X-ray diffraction patterns showed that the FeWO4 nanocrystals prepared with polyethylene glycol-200 have a partial preferential orientation in the (011) plane in relation to other nanocrystals prepared with sodium bis(2-ethylhexyl) sulfosuccinate and water. Rietveld refinement data indicates that all nanocrystals are monophasic with wolframite-type monoclinic structures and exhibit different distortions on octahedral [FeO6]/[WO6] clusters. High resolution transmission electron microcopy revealed an oriented attachment mechanism for the growth of aggregated FeWO4 nanocrystals. Finally, we observed that the photoluminescence properties of these nanocrystals are affected by partial preferential orientation in the (011) plane and distortions on [FeO6]/[WO6] clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ternary molybdates and tungstates ABO4 (A=Ca, Pb and B= Mo, W) are a group of materials that could be used for a variety of optoelectronic applications. We present a study of the optoelectronic properties based on first-principles using several orbitaldependent one-electron potentials applied to several orbital subspaces. The optical properties are split into chemical-species contributions in order to quantify the microscopic contributions. Furthermore, the effect of using several one-electron potentials and orbital subspaces is analyzed. From the results, the larger contribution to the optical absorption comes from the B-O transitions. The possible use as multi-gap solar cell absorbents is analyzed.