937 resultados para tumour suppression
Resumo:
Insulin is a prebiotic food ingredient, which suppresses colon tumour growth and development in rats. In the gut lumen, it is fermented to lactic acid and short chain fatty acids (SCFA). Of these, butyrate has suppressing agent activities, but little is known concerning cellular responses to complex fermentation samples. To investigate the effects of fermentation products of insulin on cellular responses related to colon carcinogenesis. Fermentations were performed in anaerobic batch cultures or in a three-stage fermentation model that simulates conditions in colon-segments (proximal, transverse, distal). Substrate was insulin enriched with oligofructose (Raftilose® Synergy1), fermented with probiotics (Bifidobacterium lactis Bb12, Lactobacillus rhamnosus GG), and/or faecal inocula. HT29 or CaCo-2 cells were incubated with supernatants of the fermented samples (2.5%-25% v/v, 24-72 hours). Cellular parameters of survival, differentiation, tumour progression, and invasive growth were determined. Fermentation supernatants derived from probiotics and Synergy1 were more effective than with glucose. The additional fermentation with faecal slurries produced supernatants with lower toxicity, higher SCFA contents, and distinct cellular functions. The supernatant derived from the gut model vessel representing the distal colon, was most effective for all parameters, probably on account of higher butyrate-concentrations. Biological effects of insulin upon colon cells may be mediated not only by growth stimulation of the lactic acid-producing bacteria and/or production of butyrate, but also by other bacteria and products of the gut lumen. These newly reported properties of the supernatants to inhibit growth and metastases in colon tumour cells are important mechanisms of tumour suppression.
Resumo:
Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.
Resumo:
Carcinoma ex pleomorphic adenoma (Ca ex PA) is a carcinoma arising from a primary or recurrent benign pleomorphic adenoma. It often poses a diagnostic challenge to clinicians and pathologists. This study intends to review the literature and highlight the current clinical and molecular perspectives about this entity. The most common clinical presentation of CA ex PA is of a firm mass in the parotid gland. The proportion of adenoma and carcinoma components determines the macroscopic features of this neoplasm. The entity is difficult to diagnose pre-operatively. Pathologic assessment is the gold standard for making the diagnosis. Treatment for Ca ex PA often involves an ablative surgical procedure which may be followed by radiotherapy. Overall, patients with Ca ex PA have a poor prognosis. Accurate diagnosis and aggressive surgical management of patients presenting with Ca ex PA can increase their survival rates. Molecular studies have revealed that the development of Ca ex PA follows a multi-step model of carcinogenesis, with the progressive loss of heterozygosity at chromosomal arms 8q, then 12q and finally 17p. There are specific candidate genes in these regions that are associated with particular stages in the progression of Ca ex PA. In addition, many genes which regulate tumour suppression, cell cycle control, growth factors and cell-cell adhesion play a role in the development and progression of Ca ex PA. It is hopeful that these molecular data can give clues for the diagnosis and management of the disease.
Resumo:
Background Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. Methods An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. Results At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. Conclusion These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.
Resumo:
BRCA1 is a major breast and ovarian cancer susceptibility gene, with mutations in this gene predisposing women to a very high risk of developing breast and ovarian tumours. BRCA1 primarily functions to maintain genomic stability via critical roles in DNA repair, cell cycle checkpoint control, transcriptional regulation, apoptosis and mRNA splicing. As a result, BRCA1 mutations often result in defective DNA repair, genomic instability and sensitivity to DNA damaging agents. BRCA1 carries out these different functions through its ability to interact, and form complexes with, a vast array of proteins involved in multiple cellular processes, all of which are considered to contribute to its function as a tumour suppressor. This review discusses and highlights recent research into the functions of BRCA1-related protein complexes and their roles in maintaining genomic stability and tumour suppression.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Das VHL-Syndrom umfasst Erkrankungen, die mit einem Funktionsverlust von VHL einhergehen. Das Tumorspektrum umfasst retinale und zerebrale Hämangioblastome, Nierenzysten und klarzellige Nierenkarzinome, Zysten und Tumore des Pankreas, Phäochromocytome, Adenome der Hoden und Tumore des Mittelohrs. Obwohl aufgrund klinischer Studien bekannt ist, welche VHL-Mutation mit welchen Neoplasien assoziiert werden können, konnte bisher kein VHL-Mausmodell das Krankheitsbild des VHL-Syndroms widerspiegeln. Daher ist vermutlich eine zusätzliche Fehlregulation weiterer Gene nötig ist, um die Tumorgenese in den verschiedenen Geweben zu induzieren. In mehreren klarzelligen Nierenkarzinomen konnte bereits eine PTEN-Defizienz nachgewiesen werden, der Verlust von PTEN wird außerdem auch mit der Tumorgenese von Phäochromocytomen assoziiert. Möglicherweise wirken VHL und PTEN also in der Tumorsuppression in der Niere und der Nebenniere zusammen.rnIm Rahmen dieser Arbeit konnte erstmals eine VHL-vermittelte Stabilisierung der PTEN-Konzentration sowohl in embryonalen als auch in Tumor-Zellen der Niere nachgewiesen werden. Die Analyse des Regulationsmechanismus ergab erstens eine Hypoxie-abhängige Abnahme der Transkription von PTEN. Des Weiteren konnte eine VHL-vermittelte Ubiquitinylierung von NEDD4-1, welches als E3-Ligase von PTEN dessen Degradation und Kerntransport reguliert, ermittelt werden. rnIn Nierenkarzinom-Zellen wurde weiterhin eine VHL- bzw. PTEN-Restitution induziert, um die Auswirkungen der beiden Tumorsuppressoren auf das Zellverhalten in vitro und in vivo zu untersuchen. Sowohl VHL als auch PTEN hatten dieselben Effekte lediglich in unterschiedlicher Intensität auf das Verhalten der Zellen. So konnte VHL- und PTEN-abhängig eine Verstärkung der Adhäsion, eine Inhibierung der Migration und eine Verminderung der Überlebens- und Metastasierungsfähigkeit nachgewiesen werden. Des Weiteren wurden Mausmodelle mit einem ubiquitären, heterozygoten Pten-Verlust generiert, die teilweise eine zusätzliche Haploinsuffizienz von Vhl bzw. eine heterozygote VHL Typ II-Mutation (V2B oder V2C) trugen. Sporadisch entwickelten diese Mäuse Vhl-abhängig Lebertumore und Pten-abhängig Lymphome und Ovarialkarzinome. Einige Mäuse mit einer kombinierten Vhl- und Pten-Defizienz bildeten zusätzlich Nierenzysten aus, die teilweise das gesamte Volumen der Niere einnahmen. Besonders häufig entstanden in Pten-haploinsuffizienten Mäusen Phäochromocytome, die durch eine zusätzliche V2B- oder V2C-Mutation in gleichaltrigen Mäusen deutlich weiterentwickelt waren. Demnach induziert erst der gemeinsame Verlust von Vhl und Pten die Bildung von Nierenzysten und Phäochromocytomen, welche dem Krankheitsbild des VHL-Syndroms zugeordnet werden.rnDie Untersuchungen innerhalb dieser Arbeit zeigen erstmalig die Interaktion und Kooperation von VHL und PTEN in der Tumorsuppression. Die Resultate bieten außerdem die Grundlage für weitere Analysen der Auswirkung der VHL-vermittelten PTEN-Stabilisierung und für detailliertere Untersuchungen der durch die kombinierte Vhl- und Pten-Defizienz induzierten Neoplasien der Niere und der Nebennieren-Tumore in in vivo Mausmodellen.rn
Resumo:
Carbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor- reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.
Resumo:
Cellular senescence is a stable arrest of cell proliferation induced by several factors such as activated oncogenes, oxidative stress and shortening of telomeres. Senescence acts as a tumour suppression mechanism to halt the progression of cancer. However, senescence may also impact negatively upon tissue regeneration, thus contributing to the effects of ageing. The eukaryotic genome is controlled by various modes of transcriptional and translational regulation. Focus has therefore centred on the role of long non- coding RNAs (lncRNAs) in regulating the genome. Accordingly, understanding how lncRNAs function to regulate the senescent genome is integral to improving our knowledge and understanding of tumour suppression and ageing. Within this study, I set out to investigate the expression of lncRNAs’ expression within models of senescence. Through a custom expression array, I have shown that expression of multiple different lncRNAs is up-regulated and down regulated in IMR90 replicative senescent fibroblasts and oncogene-induced senescent melanocytes. LncRNA expression was determined to be specific to stable senescence-associated cell arrest and predominantly within the nucleus of senescent cells. In order to examine the function of lncRNA expression in senescence, I selected lncRNA transcript ENST0000430998 (lncRNA_98) to focus my investigations upon. LncRNA_98 was robustly upregulated within multiple models of senescence and efficiently depleted using anti-sense oligonucleotide technology. Characterisation and unbiased RNA-sequencing of lncRNA_98 deficient senescent cells highlighted a list of genes that are regulated by lncRNA_98 expression in senescent cells and may regulate aspects of the senescence program. Specifically, the formation of SAHF was impeded upon depletion of lncRNA_98 expression and levels of total pRB protein expression severely decreased. Validation and recapitulation of consequences of pRB depletion was confirmed through lncRNA_98 knock-out cells generated using CRISPR technology. Surprisingly, inhibition of ATM kinase functions permitted the restoration of pRB protein levels within lncRNA_98 deficient cells. I propose that lncRNA_98 antagonizes the ability of ATM kinase to downregulate pRB expression at a post-transcriptional level, thereby potentiating senescence. Furthermore, lncRNA expression was detected within fibroblasts of old individuals and visualised within senescent melanocytes in human benign nevi, a barrier to melanoma progression. Conversely, mining of 337 TCGA primary melanoma data sets highlighted that the lncRNA_98 gene and its expression was lost from a significant proportion of melanoma samples, consistent with lncRNA_98 having a tumour suppressor functions. The data presented in this study illustrates that lncRNA_98 expression has a regulatory role over pRB expression in senescence and may regulate aspects of tumourigenesis and ageing.
Resumo:
Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.
Resumo:
Medulloblastoma (MB), the most common malignant brain tumour in children, is characterised by a high risk of leptomeningeal dissemination. But little is known about the molecular mechanisms that promote cancer cell migration in MB. Aberrant expression of miR-21 is recognised to be causatively linked to metastasis in a variety of human neoplasms including brain tumours; however its function in MB is still unknown. In this study we investigated the expression level and the role of miR-21 in MB cell migration. miR-21 was found to be up-regulated, compared to normal cerebellum, in 29/29 MB primary samples and 6/6 MB-derived cell lines. Inverse correlation was observed between miR-21 expression and the metastasis suppressor PDCD4, while miR-21 repression increased the release of PDCD4 protein, suggesting negative regulation of PDCD4 by miR-21 in MB cells. Anti-miR-21 decreased protein expression of the tumour cell invasion mediators MAP4K1 and JNK, which are also known to be negatively regulated by PDCD4, and down-regulated integrin protein that is essential for MB leptomeningeal dissemination. Moreover miR-21 knockdown in MB cells increased the expression of two eminent negative modulators of cancer cell migration, E-Cadherin and TIMP2 proteins that are known to be positively regulated by PDCD4. Finally and importantly, suppression of miR-21 decreased the motility of MB cells and reduced their migration across basement membranes in vitro. Together, these compelling data propose miR-21 pathway as a novel mechanism impacting MB cell dissemination and raises the possibility that curability of selected MB may be improved by pharmaceutical strategies directed towards microRNA-21.
Resumo:
A hallmark of acute myeloid leukaemia (AML) is a block in differentiation caused by deregulated gene expression. The tumour suppressor Hypermethylated In Cancer 1 (HIC1) is a transcriptional repressor, which is epigenetically silenced in solid cancers. HIC1 mRNA expression was found to be low in 128 patient samples of AML and CD34+ progenitor cells when compared with terminally differentiated granulocytes. HIC1 mRNA was induced in a patient with t(15;17)-positive acute promyelocytic leukaemia receiving all-trans retinoic acid (ATRA) therapy. We therefore investigated whether HIC1 plays a role in granulocytic differentiation and whether loss of function of this gene might contribute to the differentiation block in AML. We evaluated HIC1 mRNA levels in HL-60 and U-937 cells upon ATRA-induced differentiation and in CD34+ progenitor cells after granulocyte colony-stimulating factor-induced differentiation. In both models of granulocytic differentiation, we observed significant HIC1 induction. When HIC1 mRNA was suppressed in HL-60 cells using stably expressed short hairpin RNA targeting HIC1, granulocytic differentiation was altered as assessed by CD11b expression. Bisulphite sequencing of GC-rich regions (CpG islands) in the HIC1 promoter provided evidence that the observed suppression in HL-60 cells was not because of promoter hypermethylation. Our findings indicate a role for the tumour suppressor gene HIC1 in granulocytic differentiation. Low expression of HIC1 may very well contribute to pathogenic events in leukaemogenesis.
Resumo:
Recent studies suggest that regulatory T cells (Tregs) are associated with disease severity and progression in papilloma virus induced neoplasia. Bovine papilloma virus (BPV) is recognised as the most important aetiological factor in equine sarcoid (ES) disease. The aim of this study was to compare expression levels of Treg markers and associated cytokines in tissue samples of ES-affected equids with skin samples of healthy control horses. Eleven ES-affected, and 12 healthy horses were included in the study. Expression levels of forkhead box protein 3 (FOXP3), interleukin 10 (IL10), interleukin 4 (IL4) and interferon gamma (IFNG) mRNA in lesional and tumour-distant samples from ES-affected horses, as well as in dermal samples of healthy control horses were measured using quantitative reverse transcription polymerase chain reaction (PCR). Expression levels were compared between lesional and tumour-distant as well as between tumour-distant and control samples. Furthermore, BPV-1 E5 DNA in samples of ES-affected horses was quantified using quantitative PCR, and possible associations of viral load, disease severity and gene expression levels were evaluated. Expression levels of FOXP3, IL10 and IFNG mRNA and BPV-1 E5 copy numbers were significantly increased in lesional compared to tumour-distant samples. There was no difference in FOXP3 and cytokine expression in tumour-distant samples from ES- compared with control horses. In tumour-distant samples viral load was positively correlated with IL10 expression and severity score. The increased expression of Treg markers in tumour-associated tissues of ES-affected equids indicates a local, Treg-induced immune suppression.
Resumo:
Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (-61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY.