955 resultados para tube-fin heat exchanger


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämän kandidaatintyön tavoitteena oli esitellä orbitaali-TIG-hitsauksen käyttämistä putkien päittäishitsaamiseen. Työssä esitellään Suomesta saatavia orbitaali-TIG-laitteita ja TIG-hitsausprosessi pääperiaatteiltaan sekä prosessin käyttämistä orbitaalihitsaukseen. Myös orbitaali-TIG-hitsauksen tuottavuuteen ja laatuun liittyviä asioita käydään läpi. Suomesta saatavilla olevista laitteista valittiin toiminnallisten mittojen kannalta sopivimmat kandidaatintyötä varten suunniteltuun ripaputkilämmönvaihtimen hitsaukseen. Työ on pääasiallisesti tehty kirjallisuustutkimuksena käyttäen apuna orbitaalilaitteistojen valmistajien ja jälleenmyyjien haastatteluja. Kirjalliset lähteet koostuvat kotimaisesta ja kansainvälisestä hitsauksen alan kirjallisuudesta ja teksti on pyritty sitomaan yhteen käyttäen useaa eri lähdettä. Laitekohtaiset tiedot saatiin laitevalmistajien tuotetiedotteista ja sähköpostihaastatteluna laitteiden jälleenmyyjiltä ja laitevalmistajilta. Suomessa orbitaali-TIG-laitteita maahantuo ja jälleenmyy Masino Welding Oy ja Suomen Teknohaus Oy. Suomessa laitteita valmistaa Kemppi Oy, jonka orbitaalilaitteilla on useita jälleenmyyjiä. Masino Welding Oy myy saksalaisia Orbitalum GmbH:n laitteita ja Suomen Teknohaus Oy ranskalaisia Polysoude S.A.S.:n laitteita. Näiden laitevalmistajien joukosta suunnitellun ripaputkilämmönvaihtimen hitsaukseen soveltuu Orbitalumilta ja Polysoudelta yhdet sekä Kempiltä kaksi umpipihtimallista orbitaalihitsauspäätä. Orbitaali-TIG-hitsauslaitteissa virtalähteet ovat kehittyneet eniten vuosien aikana ja eri laitevalmistajien laitteistojen erot ovat pääasiassa virtalähteisiin liittyviä. Ripaputkilämmönvaihtimen hitsaamiseen sopivin hitsauspäämalli on umpipihti, sillä lämmönvaihtimen päädyt ovat hyvin ahtaita ja umpipihdit ovat orbitaalihitsauspäistä kaikkein kompakteimmat. Suomessa orbitaali-TIG-laitteita ei ole kauheasti tarjolla ja laitteiden markkinointi on jossain määrin kannattamatonta. Orbitaalihitsaus on kuitenkin varteenotettava vaihtoehto TIG-käsinhitsaukselle, jos hitsataan paljon samankaltaisia hitsejä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explored the effects of the double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The double counter twisted tapes were used as counter-swirl flow generators in the test section. The experiments were performed with double counter twisted tapes of four different twist ratios (y = 1.95, 3.85, 5.92 and 7.75) using air as the testing fluid in a circular tube turbulent flow regime where the Reynolds number was varied from 6950 to 50,050. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing twist ratio. The results also revealed that the heat transfer rate in the tube fitted with double counter twisted tape was significantly increased with corresponding increase in pressure drop. In the range of the present work, heat transfer rate and friction factor were obtained to be around 60 to 240% and 91 to 286% higher than those of the plain tube values, respectively. The maximum thermal enhancement efficiency of 1.34 was achieved by the use of double counter twisted tapes at constant blower power. In addition, the empirical correlations for the Nusselt number, friction factor and thermal enhancement efficiency were also developed, based on the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat exchanger design plays a significant role in the performance of solid state hydrogen storage device. In the present study, a cylindrical hydrogen storage device with an embedded annular heat exchanger tube with radial circular copper fins, is considered. A 3-D mathematical model of the storage device is developed to investigate the sorption performance of metal hydride (MH). A prototype of the device is fabricated for 1 kg of MH alloy, LaNi5, and tested at constant supply pressure of hydrogen, validating the simulation results. Absorption characteristics of storage device have been examined by varying different operating parameters such as hydrogen supply pressure and cooling fluid temperature and velocity. Absorption process is completed in 18 min when these parameters are 15 bar, 298 K and 1 m/s respectively. A study of geometric parameters of copper fins (such as perforation, number and thickness of fin) has been carried out to investigate their effects on absorption process. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local shell side coefficient measurements in the end conpartments of a model shell and tube heat exchanger have been made using an electrochemical technique. Limited data are also reported far the second compartment. The end compartment average coefficients have been found to be smaller than reported data for a corresponding internal conpartment. The second compartment data. have been shown to lie between those for the end compartments and the reported internal compartment data. Experimental data are reported fcr two port types and two baffle orientations. with data for the case of an inlet compartment impingement baffle also being given . Port type is shown to have a small effect on compartment coefficients, these being largely unaffected. Likewise, the outlet compartment average coefficients are slightly snaller than those for the inlet compartment, with the distribution of individual tube coefficients being similar. Baffle orientation has been shown to have no effect on average coefficients, but the distribution of the data is substantially affected. The use of an impingement baffle in the inlet compartment lessens the efect of baffle orientation on distribution . Recommendations are made for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper presents a theoretical analysis of a cross flow heat exchanger with a new flow arrangement comprehending several tube rows. The thermal performance of the proposed flow arrangement is compared with the thermal performance of a typical counter cross flow arrangement that is used in chemical, refrigeration, automotive and air conditioning industries. The thermal performance comparison has been performed in terms of the following parameters: heat exchanger effectiveness and efficiency, dimensionless entropy generation, entransy dissipation number, and dimensionless local temperature differences. It is also shown that the uniformity of the temperature difference field leads to a higher thermal performance of the heat exchanger. In the present case this is accomplished thorough a different organization of the in-tube fluid circuits in the heat exchanger. The relation between the recently introduced "entransy dissipation number" and the conventional thermal effectiveness has been obtained in terms of the "number of transfer units". A case study has been solved to quantitatively to obtain the temperature difference distribution over two rows units involving the proposed arrangement and the counter cross flow one. It has been shown that the proposed arrangement presents better thermal performance regardless the comparison parameter. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A heat loop suitable for the study of thermal fouling and its relationship to corrosion processes was designed, constructed and tested. The design adopted was an improvement over those used by such investigators as Hopkins and the Heat Transfer Research Institute in that very low levels of fouling could be detected accurately, the heat transfer surface could be readily removed for examination and the chemistry of the environment could be carefully monitored and controlled. In addition, an indirect method of electrical heating of the heat transfer surface was employed to eliminate magnetic and electric effects which result when direct resistance heating is employed to a test section. The testing of the loop was done using a 316 stainless steel test section and a suspension of ferric oxide and water in an attempt to duplicate the results obtained by Hopkins. Two types of thermal ·fouling resistance versus time curves were obtained . (i) Asymptotic type fouling curve, similar to the fouling behaviour described by Kern and Seaton and other investigators, was the most frequent type of fouling curve obtained. Thermal fouling occurred at a steadily decreasing rate before reaching a final asymptotic value. (ii) If an asymptotically fouled tube was cooled with rapid cir- ·culation for periods up to eight hours at zero heat flux, and heating restarted, fouling recommenced at a high linear rate. The fouling results obtained were observed to be similar and 1n agreement with the fouling behaviour reported previously by Hopkins and it was possible to duplicate quite closely the previous results . This supports the contention of Hopkins that the fouling results obtained were due to a crevice corrosion process and not an artifact of that heat loop which might have caused electrical and magnetic effects influencing the fouling. The effects of Reynolds number and heat flux on the asymptotic fouling resistance have been determined. A single experiment to study the effect of oxygen concentration has been carried out. The ferric oxide concentration for most of the fouling trials was standardized at 2400 ppM and the range of Reynolds number and heat flux for the study was 11000-29500 and 89-121 KW/M², respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates numerically the heat transfer characteristics of confined slot jet impingement on a pin-fin heat sink. A variety of pin-fin heat sinks is investigated, and the resulting enhancement of heat transfer studied. The distribution of heat transfer coefficient on the top surface of the base plate and that along the fin height are examined. Both steady and pulsated jets are studied. It is observed that for a steady jet impingement on a pin-fin heat sink, the effective heat transfer coefficient increases with fin height, leading to a corresponding decrease in base plate temperature for the same heat flux. In the case of pulsated jets, the influence of pulse frequency and the Reynolds number is examined, and their effect on the effective heat transfer coefficient is studied.