923 resultados para tube furnace
Resumo:
Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.
Resumo:
Determination of chlorine using the molecular absorption of aluminum mono-chloride (AlCl) at the 261.418 nm wavelength was accomplished by high-resolution continuum source molecular absorption spectrometry using a transversely heated graphite tube furnace with an integrated platform. For the analysis. 10 mu L of the sample followed by 10 mu L of a solution containing Al-Ag-Sr modifier, (1 g L-1 each), were directly injected onto the platform. A spectral interference due to the use of Al-Ag-Sr as mixed modifier was easily corrected by the least-squares algorithm present in the spectrometer software. The pyrolysis and vaporization temperatures were 500 degrees C and 2200 degrees C, respectively. To evaluate the feasibility of a simple procedure for the determination of chlorine in food samples present in our daily lives, two different digestion methods were applied, namely (A) an acid digestion method using HNO3 only at room temperature, and (B) a digestion method with Ag, HNO3 and H2O2, where chlorine is precipitated as a low-solubility salt (AgCl), which is then dissolved with ammonia solution. The experimental results obtained with method B were in good agreement with the certified values and demonstrated that the proposed method is more accurate than method A. This is because the formation of silver chloride prevented analyte losses by volatilization. The limit of detection (LOD, 3 sigma/s) for Cl in methods A and B was 18 mu g g(-1) and 9 mu g g(-1), respectively, 1.7 and 3.3 times lower compared to published work using inductively coupled plasma optical emission spectrometry, and absolute LODs were 2.4 and 1.2 ng, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper the proximate analysis and ultimate analysis of sulfur in different semi-cokes generated from Rizhao bituminous coal and Beijing anthracite under different temperatures is done. Also the tendency of the contents of volatile, ash, fixed carbon and sulfur in different semi-cokes along with the different preparation temperatures is studied. Then the combustion experiment of semi-cokes in the drop-tube furnace system was carried out, and the kinetic parameters of different semi-cokes ware calculated.
Resumo:
生物质快速热解制油技术能以连续的工艺和工厂化的生产方式将木屑等生物质转化为易储存、易运输、能量密度高的生物油,是目前受到较多关注的一种转换技术。生物油既可以在锅炉中直接燃烧使用,也可用于热解气化制备合成气,再进一步合成为高品质的液体燃料。 为更好地处理生物油燃烧与热解过程中出现的问题,并为燃烧与热解反应装置的设计及优化提供必要数据,本文首先对由木屑在自热式生物质热解液化装置中热解得到的生物油进行了各种理化特性的分析,之后利用热重、热重-红外联用、管式炉等对生物油的热解与燃烧特性进行了实验研究。 生物油在氮气与氧气气氛下、不同升温速率的热重分析试验表明:生物油的热解分为两个阶段,第一阶段为生物油中低沸点有机物的挥发以及各组分间反应生成各类产物的过程,第二阶段为各种重组分的裂解过程。而生物油的燃烧则分为三个阶段,即前期的挥发与裂解和最后焦炭的燃烧过程。升温速率的升高使得氮气气氛中生物油样品的初始失重温度、失重峰值温度及对应的最大失重速率均有所增大,且在较高升温速率(20℃/min)下,较少含炭残余物形成。随升温速率升高,生物油着火温度提高,最终失重率无显著变化。采用热重-红外联用技术,对生物油热解过程中所释放气体进行了实时监测,在线分析结果表明,反应初始阶段主要析出物为自由水、低沸点的酸类、醇类、醛类、酮类等,随后主要释放物为水、CO2等,主要来自重组分的裂解。最后根据热重数据对热解与燃烧各段反应进行了动力学拟合。动力学分析结果表明:氮气气氛中生物油的热解过程可用两个一级反应来描述,对应其热解过程中的两个不同阶段,而生物油的燃烧过程可用三个一级反应来表示。 生物油的管式炉热解实验表明:随热解温度的升高,生物油产气率不断提高,在1100℃时达到最大值398ml/g。生物油热解气体产物中主要包含H2、CO、CO2及烃类如CH4、C2H4、C2H6等,产气热值在16.9~19.1MJ/Nm3间。在900℃下,生物油各种产物气体、残炭、焦油的比例约为30:6:64,残炭含量低于同温度下木粉热解结果,而焦油含量较高。
Resumo:
This review paper summarises briefly some important achievements of our recent research on the synthesis and novel applications of nanostructure ZnO such as honeycomb shaped 3-D (dimension) nano random-walls. A chemical reaction/vapour transportation deposition technique was employed to fabricate this structure on ZnO/SiO2/Si substrate without any catalyst and additive in a simple tube furnace to aim the low-cost and high qualified samples. Random laser action with strong coherent feedback at the wavelength between 375 nm and 395 nm has been firstly observed under 355 nm optical excitation with threshold pumping intensity of 0.38 MW/cm(2).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article reports on the growth of SnO nanobelts and dendrites by a carbothermal reduction process. The materials were synthesized in a sealed tube furnace at 1210 degrees C and at 1260 degrees C for 2 h. in a dynamic nitrogen atmosphere of 40 seem. After synthesis, gray-black materials were collected downstream in the tube and the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The results showed that the gray-black materials were composed of nanobelts, which grew in the [110] direction of the orthorhombic structure of SnO. Some of the belts also presented dendritic growth. The dendrites grew in the (110) planes of the SnO structure, and no defects were observed at the junction between the nanobelts and the dendrites. A self-catalytic vapor-liquid-solid (VLS) process was proposed to explain the growth of the SnO nanobelts and dendrites.
Resumo:
Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Boron nitride nanotubes : synthesis, characterization, functionalization, and potential applications
Resumo:
Boron nitride nanotubes (BNNTs) are structurally similar to carbon nanotubes (CNTs), but exhibit completely different physical and chemical properties. Thus, BNNTs with various interesting properties may be complementary to CNTs and provide an alternative perspective to be useful in different applications. However, synthesis of high quality of BNNTs is still challenging. Hence, the major goals of this research work focus on the fundamental study of synthesis, characterizations, functionalization, and explorations of potential applications. In this work, we have established a new growth vapor trapping (GVT) approach to produce high quality and quantity BNNTs on a Si substrate, by using a conventional tube furnace. This chemical vapor deposition (CVD) approach was conducted at a growth temperature of 1200 °C. As compared to other known approaches, our GVT technique is much simpler in experimental setup and requires relatively lower growth temperatures. The as-grown BNNTs are fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Energy Filtered Mapping, Raman spectroscopy, Fourier Transform Infra Red spectroscopy (FTIR), UV-Visible (UV-vis) absorption spectroscopy, etc. Following this success, the growth of BNNTs is now as convenient as growing CNTs and ZnO nanowires. Some important parameters have been identified to produce high-quality BNNTs on Si substrates. Furthermore, we have identified a series of effective catalysts for patterned growth of BNNTs at desirable or pre-defined locations. This catalytic CVD technique is achieved based on our finding that MgO, Ni or Fe are the good catalysts for the growth of BNNTs. The success of patterned growth not only explains the role of catalysts in the formation of BNNTs, this technique will also become technologically important for future device fabrication of BNNTs. Following our success in controlled growth of BNNTs on substrates, we have discovered the superhydrophobic behavior of these partially vertically aligned BNNTs. Since BNNTs are chemically inert, resistive to oxidation up to ~1000°C, and transparent to UV-visible light, our discovery suggests that BNNTs could be useful as self-cleaning, insulating and protective coatings under rigorous chemical and thermal conditions. We have also established various approaches to functionalize BNNTs with polymeric molecules and carbon coatings. First, we showed that BNNTs can be functionalized by mPEG-DSPE (Polyethylene glycol-1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a bio-compatible polymer that helps disperse and dissolve BNNTs in water solution. Furthermore, well-dispersed BNNTs in water can be cut from its original length of >10µm to(>20hrs). This success is an essential step to implement BNNTs in biomedical applications. On the other hand, we have also succeeded to functionalize BNNTs with various conjugated polymers. This success enables the dispersion of BNNTs in organic solvents instead of water. Our approaches are useful for applications of BNNTs in high-strength composites. In addition, we have also functionalized BNNTs with carbon decoration. This was performed by introducing methane (CH4) gas into the growth process of BNNT. Graphitic carbon coatings can be deposited on the side wall of BNNTs with thicknesses ranging from 2 to 5 nm. This success can modulate the conductivity of pure BNNTs from insulating to weakly electrically conductive. Finally, efforts were devoted to explore the application of the wide bandgap BNNTs in solar-blind deep UV (DUV) photo-detectors. We found that photoelectric current generated by the DUV light was dominated in the microelectrodes of our devices. The contribution of photocurrent from BNNTs is not significant if there is any. Implication from these preliminary experiments and potential future work are discussed.
Resumo:
The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl3 source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density Npeak = 8.0 × 1018 cm−3 and a junction depth dj = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J0 below 10 fA/cm2. With these properties, the POCl3 process can compete with ion implantation or doped oxide approaches.
Resumo:
In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.
Resumo:
In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050 ˚C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1µg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.