995 resultados para tsunami, Ionian Sea, geomorphology, palaeogeography, sea-level evolution
Resumo:
This study presents geo-scientific evidence for Holocene tsunami impact along the shores of the Eastern Ionian Sea. Cefalonia Island, the Gulf of Kyparissia and the Gialova Lagoon were subject of detailed geo-scientific investigations. It is well known that the coasts of the eastern Mediterranean were hit by the destructive influence of tsunamis in the past. The seismically highly active Hellenic Trench is considered as the most significant tsunami source in the Eastern Ionian Sea. This study focuses on the reconstruction and detection of sedimentary signatures of palaeotsunami events and their influence on the Holocene palaeogeographical evolution. The results of fine grained near coast geo-archives are discussed and interpreted in detail to differentiate between tsunami, storm and sea level highstands as sedimentation processes.rnA multi-method approach was applied using geomorphological, sedimentological, geochemical, geophysical and microfaunal analyses to detect Holocene tsunamigenic impact. Chronological data were based on radiocarbondatings and archaeological age estimations to reconstruct local geo-chronostratigraphies and to correlate them on supra-regional scales.rnDistinct sedimentary signatures of 5 generations of tsunami impact were found along the coasts of Cefalonia in the Livadi coastal plain. The results show that the overall coastal evolution was influenced by tsunamigenic impact that occured around 5700 cal BC (I), 4250 cal BC (II), at the beginning of the 2nd millennium cal BC (III), in the 1st millennium cal BC (IV) and posterior to 780 cal AD (V). Sea level reconstructions and the palaeogeographical evolution show that the local Holocene sea level has never been higher than at present.rnAt the former Mouria Lagoon along the Gulf of Kyparissia almost four allochtonous layers of tsunamigenic origin were identified. The stratigraphical record and palaeogeographical reconstructions show that major environmental coastal changes were linked to these extreme events. At the southern end of the Agoulenitsa Lagoon at modern Kato Samikon high-energy traces were found more than 2 km inland and upt ot 9 m above present sea level. The geo-chronological framework deciphered tsunami landfall for the 5th millennium cal BC (I), mid to late 2nd mill. BC (II), Roman times (1st cent. BC to early 4th cent. AD) (III) and most possible one of the historically well-known 365 AD or 521/551 AD tsunamis (IV).rnCoarse-grained allochthonous sediments of marine origin were found intersecting muddy deposits of the quisecent sediments of the Gialova Lagoon on the southwestern Peloponnese. Radiocarbondatings suggest 6 generations of major tsunami impact. Tsunami generations were dated to around 3300 cal BC (I), around the end of 4th and the beginning of 3rd millennium BC (II), after around 1100 cal BC (III), after the 4th to 2nd cent. BC (IV), between the 8th and early 15th cent. AD (V) and between the mid 14th to beginning of 15th cent. AD (VI). Palaeogeographical and morphological characteristics in the environs of the Gialova Lagoon were controlled by high-energy influence.rnSedimentary findings in all study areas are in good accordance to traces of tsunami events found all over the Ionian Sea. The correlation of geo-chronological data fits very well to coastal Akarnania, the western Peloponnese and finding along the coasts of southern Italy and the Aegean. Supra-regional influence of tsunamigenic impact significant for the investigated sites. The palaeogeographical evolution and palaeo-geomorphological setting of the each study area was strongly affected by tsunamigenic impact.rnThe selected geo-archives represent extraordinary sediment traps for the reconstruction of Holocene coastal evolution. Our result therefore give new insight to the exceptional high tsunami risk in the eastern Mediterranean and emphasize the underestimation of the overall tsunami hazard.
Resumo:
The relationship between monthly sea-level data measured at stations located along the Chinese coast and concurrent large-scale atmospheric forcing in the period 1960-1990 is examined. It is found that sea-level varies quite coherently along the whole coast, despite the geographical extension of the station set. A canonical correlation analysis between sea-level and sea-level pressure (SLP) indicates that a great part of the sea-level variability can be explained by the action of the wind stress on the ocean surface. The relationship between sea-level and sea-level pressure is analyzed separately for the summer and winter half-years. In winter, one factor affecting sea-level variability at all stations is the SLP contrast between the continent and the Pacific Ocean, hence the intensity of the winter Monsoon circulation. Another factor that affects coherently all stations is the intensity of the zonal circulation at mid-latitudes. In the summer half year, on the other hand, the influence of SLP on sea-level is spatially less coherent: the stations in the Yellow Sea are affected by a more localized circulation anomaly pattern, whereas the rest of the stations is more directly connected to the intensity of the zonal circulation. Based on this analysis, statistical models (different for summer and winter) to hindcast coastal sealevel anomalies from the large-scale SLP field are formulated. These models have been tested by fitting their internal parameters in a test period and reproducing reasonably the sea-level evolution in an independent period. These statistical models are also used to estimate the contribution of the changes of the atmospheric circulation on sea-level along the Chinese coast in an altered climate. For this purpose the ouput of 150 year-long experiment with the coupled ocean-atmosphere model ECHAM1-LSG has been analyzed, in which the atmospheric concentration of greenhouse gases was continuously increased from 1940 until 2090, according to the Scenario A projection of the Intergovermental Panel on Climate Change. In this experiment the meridional (zonal) circulation relevant for sea-level tends to become weaker (stronger) in the winter half year and stronger (weaker) in summer. The estimated contribution of this atmospheric circulation changes to coastal sea-level is of the order of a few centimeters at the end of the integration, being in winter negative in the Yellow Sea and positive in the China Sea with opposite signs in the summer half-year.
Resumo:
Multidisciplinary investigations of the infills of steeply-incised buried channels on the coast of Essex, England, provide important insights into late Middle Pleistocene climate and sea-level change and have a direct bearing on the differentiation of MIS 11 and MIS 9 in terrestrial records. New data are presented from Rochford and Burnham-on-Crouch where remnants of two substantial palaeo-channels filled with interglacial sediment can be directly related to the terrace stratigraphy of the Thames. The sediments in both channels accumulated in an estuarine environment early in an interglacial when mixed oak forest was becoming established. Lithological evidence suggests that the interglacial beds post-date the brackish-water infill of an older palaeo-channel ascribed to the Hoxnian and correlated with part of MIS 11, and pre-date terrace gravels (Barling Gravel) ascribed to MIS 8. An MIS 9 attribution is supported by molluscan biostratigraphy, palaeo-salinity and amino-acid racemization data. The relative sea-level record in this area thus includes evidence for two major marine transgressions during MIS 11 and MIS 9, with local maxima of >10 m O.D. Both are associated with sediments that show ‘Hoxnian’ palynological affinities. The wider significance of these findings, and of an intermediate phase of pronounced fluvial incision during MIS 10, is discussed.
Resumo:
In the present investigation, an attempt is made to document various episodes of transgression and regression during the late Quaternary period from the study of coastal and shelf sequences extending from the inland across the beach to the shelf domain. Shore parallel beach ridges with alternating swales and occurrence of strand line deposits on the shelf make the northern Kerala coast an ideal natural laboratory for documenting the morpho-dynamic response of the coast to the changing sea level. The objectives of the study are lithographic reconstruction of environments of deposition from the coastal plain and shelf sequences; documentation of episodes of transgression and regression by studying different coastal plain sequences and shelf deposits and evolve a comprehensive picture of late Quaternary coastal evolution and sea level changes along the northern Kerala coast by collating morphological, lithological and geochronological evidences from the coastal plain and shelf sequences. The present study is confined to two shore-normal east-west trending transects, Viz. Punjavi and Onakkunnu, in the northern Kerala coast.
Resumo:
Temporal and spatial patterns of relative sea level (RSL) change in the North of Britain and Ireland during the Holocene are examined. Four episodes, each defined by marked changes in the RSL trend, are identified. Each episode is marked by a rise to a culminating shoreline followed by a fall. Episode HRSL-1 dates from the Younger Dryas to early in the Holocene; HRSL-2 to HRSL-4 occurred later in the Holocene. There is extensive evidence for each episode, and on this basis the spatial distribution of the altitude data for three culminating shorelines and a shoreline formed at the time of the Holocene Storegga Slide tsunami (ca 8110 ± 100 cal. BP) is analysed. Ordinary Kriging is used to determine the general pattern, following which Gaussian Trend Surface Analysis is employed. Recognising that empirical measurements of RSL change can be unevenly distributed spatially, a new approach is introduced which enables the developing pattern to be identified. The patterns for the most widely occurring shorelines were analysed and found to be similar and common centre and axis models were developed for all shorelines. The analyses described provide models of the spatial pattern of Holocene RSL change in the area between ca 8100 cal. BP and ca 1000 cal. BP based on 2262 high resolution shoreline altitude measurements. These models fit the data closely, no shoreline altitude measurement lying more than −1.70 m or +1.82 m from the predicted value. The models disclose a similar pattern to a recently published Glacial Isostatic Adjustment model for present RSL change across the area, indicating that the overall spatial pattern of RSL change may not have varied greatly during the last ca 8000 years.
Resumo:
Late Quaternary deposits in the northeastern Brazil have been scarcely investigated, despite their relevance to the discussion of the post-rift evolution of the South American passive margin within the context of landform, sea level and tectonic deformation. Sedimentological, stratigraphic and morphological characterization of these deposits, referred as Post-Barreiras Sediments, led to their distinction from underlying Early/Middle Miocene strata. Based on optically stimulated luminescence (OSL) dating, two sedimentary units (PB1 and PB2) were recognized and related to the time intervals between 74.8 +/- 9.3 and 30.8 +/- 6.9 ka, and 8.8 +/- 0.9 and 1.8 +/- 0.2 ka, respectively. Unit PB1 consists of indurated sandstones and breccias either with massive bedding or complex types of soft sediment deformation structures generated by contemporaneous seismic activity. Unit PB2 is composed of massive sands or sands related to structures developed by dissipation of dunes. The present work, focusing on the Post-Barreiras Sediments, discusses landform, sea level and tectonics of the eastern South American passive margin during the latest Quaternary. Non-deposition and sub-aerial exposure related to the Tortonian worldwide low sea level combined with tectonic quiescence followed the Miocene transgression. Tectonic deformation in the latest Pleistocene created space to accommodate unit PB1 in downthrown faulted blocks and, perhaps, also synclines produced by strike-slip deformation. Although deposition of this unit was simultaneous with the progressive fall in sea level that followed the Last Interglacial Maximum, punctuated rises combined with land subsidence led to marine deposition close to the modern coastline. Renewed subsidence in the Holocene gave rise to accommodation of the Post-Barreiras Sediments. Most of unit PB2 was deposited during the Holocene Transgression, but it is not composed of marine sediments, which suggests either an insignificant rise in relative sea level or aeolian reworking of thin transgressive sands. The data presented here lead to a review of the evolution of the South American passive margin based on assumptions of uniform sedimentation and undeformed planation surfaces over a wide coastal area of the northeastern Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A large area in northeastern Marajo Island, northern Brazil, has been characterized geomorphologically, applying information acquired from Landsat imagery. This study was combined with detailed sedimentologic analysis of continuous cores, which provided a record of depositional settings developed in this area through the Holocene. The results revealed well-preserved, meandering to anastomosed drainage networks of wide palaeochannels that were superimposed by a narrower palaeochannel system. In both cases, the sedimentary record consists of sands, heterolithic deposits and muds, locally rich in plant debris. The strata are organized into fining upward successions that reach approximately 18 m thick in the wide channels and 4 m thick in the narrow channels. Sedimentary features suggestive of a coastal location for the wider palaeochannels and reworking of sediments by tidal currents include the prevalence of well to moderately sorted, rounded to sub-rounded, fine- to medium-grained sands displaying foreset packages separated by mud couplets, suggestive of tidal cycles. The data presented herein point to a rise in relative sea level reaching the Lake Arari area during the early to late/mid Holocene. This event was followed by a relative sea level drop. Tectonics seem to have contributed to an overall lowering in relative sea level in the study area since the mid-Holocene, which does not follow the same pattern recorded in other areas along the northern Brazilian coast.
Resumo:
This thesis presents the discovery of eight submerged deltas (-19 to -45m), the first documented submerged boulder barricade, a submerged sill platform and spits off the coast of Cumberland Peninsula, eastern Baffin Island, NU. The geomorphic characteristics of these features in relation to contemporaneous sea-level are presented and compared with the modern shore-zone. The submerged boulder barricade at Qikiqtarjuaq in the west indicates a -16 m sea level that isolated Broughton Channel from Baffin Bay to the north, changing the coastal dynamics from those observed at present. A shoreline deeper than -50 m planed off the fiord-mouth sill in Akpait Fiord and formed spits at -50 m and -30 m present depth. These features define a submerged shoreline gradient of 0.35 m/km to the east across northeastern Cumberland Peninsula. The linear gradient sediment supply requirements for delta formation suggest a synchronous lowstand, bracketed by ice margins and sourced from glacial outwash between 11.8-8.5 ka. This confirms the submergence trend hypothesized for eastern Cumberland Peninsula (Dyke, 1979).
Resumo:
The effects of potential sea level rise on the shoreline and shore environment have been briefly examined by considering the interactions between sea level rise and relevant coastal processes. These interactions have been reviewed beginning with a discussion of the need to reanalyze previous estimates of eustatic sea level rise and compaction effects in water level measurement. This is followed by considerations on sea level effects on coastal and estuarine tidal ranges, storm surge and water level response, and interaction with natural and constructed shoreline features. The desirability to reevaluate the well known Bruun Rule for estimating shoreline recession has been noted. The mechanics of ground and surface water intrusion with reference to sea level rise are then reviewed. This is followed by sedimentary processes in the estuaries including wetland response. Finally comments are included on some probable effects of sea level rise on coastal ecosystems. These interactions are complex and lead to shoreline evolution (under a sea level rise) which is highly site-specific. Models which determine shoreline change on the basis of inundation of terrestrial topography without considering relevant coastal processes are likely to lead to erroneous shoreline scenarios, particularly where the shoreline is composed of erodible sedimentary material. With some exceptions, present day knowledge of shoreline response to hydrodynamic forcing is inadequate for long-term quantitative predictions. A series of interrelated basic and applied research issues must be addressed in the coming decades to determine shoreline response to sea level change with an acceptable degree of confidence. (PDF contains 189 pages.)
Resumo:
National Natural Science Foundation of China (NSFC) ; [2007CB411600]; [30530120]
Resumo:
Long-wave dynamics of the interannual variations of the equatorial Indian Ocean circulation are studied using an ocean general circulation model forced by the assimilated surface winds and heat flux of the European Centre for Medium-Range Weather Forecasts. The simulation has reproduced the sea level anomalies of the Ocean Topography Experiment (TOPEX)/Poseidon altimeter observations well. The equatorial Kelvin and Rossby waves decomposed from the model simulation show that western boundary reflections provide important negative feedbacks to the evolution of the upwelling currents off the Java coast during Indian Ocean dipole (IOD) events. Two downwelling Kelvin wave pulses are generated at the western boundary during IOD events: the first is reflected from the equatorial Rossby waves and the second from the off-equatorial Rossby waves in the southern Indian Ocean. The upwelling in the eastern basin during the 1997-98 IOD event is weakened by the first Kelvin wave pulse and terminated by the second. In comparison, the upwelling during the 1994 IOD event is terminated by the first Kelvin wave pulse because the southeasterly winds off the Java coast are weak at the end of 1994. The atmospheric intraseasonal forcing, which plays an important role in inducing Java upwelling during the early stage of an IOD event, is found to play a minor role in terminating the upwelling off the Java coast because the intraseasonal winds are either weak or absent during the IOD mature phase. The equatorial wave analyses suggest that the upwelling off the Java coast during IOD events is terminated primarily by western boundary reflections.