999 resultados para trypanocidal activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trypanocidal activity of crude extracts and fractions from the leaves and stems of Peperomia obtusifolia (Piperaceae) was evaluated in vitro against the epimastigote forms of Trypanosoma cruzi. Bioactivity-guided fractionation of the most active extracts afforded seven known compounds, including three chromanes, two furofuran lignans and two flavone C-diglycosides. The most active compounds were the chromanes peperobtusin A and 3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid, with IC(50) values of 3.1 mu M (almost three times more active than the positive control benznidazole, IC(50) 10.4 mu M) and 27.0 mu M, respectively. Cytotoxicity assays using peritoneal murine macrophages indicated that the chromanes were not toxic at the level of the IC(50) for trypanocidal activity. This is the first report on the trypanocidal activity besides unspecific cytotoxicity of chromanes from Peperomia species. Additionally it represents the first time isolation of 3,4-dihydro5-hydroxy-2,7-dimethyl-8-(2 ``-methyl-2 ``-butenyl)-2-(4`-methyl-1`,3`-pentadienyl)-2H-1-benzopyran-6-carboxylic acid from P. obtusifolia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gaudichaudianic acid, a prenylated chromene isolated from Piper gaudichaudianum, has been described as a potent trypanocidal compound against the Y-strain of Trypanosoma cruzi. We herein describe its isolation as a racemic mixture followed by enantiomeric resolution using chiral HPLC and determination of the absolute configuration of the enantiomers as (+)-S and (-)-R by means of a combination of electronic and vibrational circular dichroism using density functional theory calculations. Investigation of the EtOAc extract of the roots, stems, and leaves from both adult specimens and seedlings of P. gaudichaudianum revealed that gaudichaudianic acid is biosynthesized as a racemic mixture from the seedling stage onward. Moreover, gaudichaudianic acid was found exclusively in the roots of seedlings, while it is present in all organs of the adult plant. Trypanocidal assays indicated that the (+)-enantiomer was more active than its antipode. Interestingly, mixtures of enantiomers stowed a synergistic effect, with the racemic mixture being the most active.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of 25 quinone compounds with anti-trypanocidal activity was studied by using the density functional theory (DFT) method in order to calculate atomic and molecular properties to be correlated with the biological activity. The chemometric methods principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA), Kth nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA) were used to obtain possible relationships between the calculated descriptors and the biological activity studied and to predict the anti-trypanocidal activity of new quinone compounds from a prediction set. Four descriptors were responsible for the separation between the active and inactive compounds: T-5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors give information on the kind of interaction that occurs between the compounds and the biological receptor. The prediction study was done with a set of three new compounds by using the PCA, HCA, SDA, KNN and SIMCA methods and two of them were predicted as active against the Trypanosoma cruzi. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste estudo foi avaliar a potencial atividade tripanocida do extrato bruto etanólico dos frutos de Solanum palinacanthum, Solanum lycocarpum e do glicoalcalóide solamargina. Pó do fruto seco de S. palinacanthum e S. lycocarpum foram submetidos a extracção por refluxo com etanol a 96% e solamargina foi isolada a partir do extrato bruto de S. palinacanthum. Foram determinadas de ambos os extratos e a solamargina a atividade tripanocida utilizando o ensaio colorimétrico MTT. O Extrato de S. palinacanthum mostrou-se mais ativo (IC50 = 175,9 µg.ml–1) de que o extrato de S. lycocarpum (IC50 = 194,7 µg.ml–1). A solamargina apresentou forte atividade tripanocida (IC50 = 15,3 µg.ml–1), o que pode explicar a melhor atividade de ambos os extratos. O benzonidazol (IC50 = 9,0 µg.ml–1) é a única droga utilizada para o tratamento da doença de Chagas. Estes resultados demonstram pela primeira vez que os extratos etanólicos obtidos a partir de frutos de S. palinacanthum e S. lycocarpum, além da solamargina apresentam uma atividade tripanocida potencial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)