5 resultados para tripton
Resumo:
The attenuation coefficient of photosynthetically available radiation [K-d(PAR)] and three water quality parameters [chlorophyll a (chl a)], chromophoric dissolved organic matter (CDOM) and tripton] were measured at three stations in shallow, subtropical Lake Donghu from April 2003 to March 2004. The multiple regression equation of K-d(PAR) versus chl a, CDOM, and tripton was: K-d(PAR) = 0.44 + 0.019 chl a + 1.88 CDOM + 0.016 tripton, which revealed the relative contributions of the three parameters to K-d(PAR). The effects of water and CDOM on K-d(PAR) were of minor importance (19-26%), while chl a and tripton were the two greatest contributors, accounting collectively for 74-81%.
Resumo:
Sedimentation rates of particulate material and some physicochemical parameters of water were determined in October, January, April and July 1990-91 at seven stations in the Jurumirim Reservoir (São Paulo, Brazil), three located in the Paranapanema arm, three in the Taquari arm and one near the dam. Higher sedimentation rates of tripton were found in the Paranapanema arm, followed by those from the Taquari arm and the dam. Suspended matter (2.5-48.7 mg · 1-1) and chlorophyll-a (0.7-8.1 mg · m-3) concentrations in the Paranapanema arm were in general higher resulting in lower water transparency (0.3-1.7m) than in the Taquari arm. Temporal and spatial variations in the tripton sedimentation rates were mainly influenced by allochthonous input at the stations near the river mouth. The settling fluxes at station near the dam of the reservoir were affected rather by a small autochthonous production (65 g C ass m-2 ;yr-1), indicated by a higher organic content (64-87%). Therefore, sedimentation rates measured by bottom traps were affected by sediment ressuspension especially at isothermal conditions. With respect to sedimentation, the riverine, the transition and the lacustrine zones commonly found in reservoires could be distinguished. The extent of the riverine zone in each arm of the Jurumirim Reservoir depends on the seasonal change of allochthonous input.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.