985 resultados para trinucleotide repeat expansions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent reports have shown neurodegenerative disorders to be associated with abnormal expansions of a CAG trinucleotide repeat allele at various autosomal loci. While normal chromosomes have 14 to 44 repeats, disease chromosomes may have 60 to 84 repeats. The number of CAG repeats on mutant chromosomes correlates with increasing severity of disease or decreasing age at onset of symptoms. Since we are interested in identifying the many quantitative trait loci (QTL) influencing brain functioning, we examined the possibility that the number of CAG repeats in the normal size range at these loci are relevant to "normal" neural functioning. We have used 150 pairs of adolescent (aged 16 years) twins and their parents to examine allele size at the MJD, SCA1, and DRPLA loci in heterozygous normal individuals. These are part of a large ongoing project using cognitive and physiological measures to investigate the genetie influences on cognition, and an extensive protocol of tests is employed to assess some of the key components of intellectual functioning. This study selected to examine full-scale psychometric IQ (FSIQ) and a measure of information processing (choice reaction time) and working memory (slow wave amplitude). CAG repeat size was determined on an ABI Genescan system following multiplex PCR amplification. Quantitative genetic analyses were performed to determine QTL effects of MJD, SCA1, and DRPLA on cognitive functioning. Analyses are in progress and will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA must constantly be repaired to maintain genome stability. Although it is clear that DNA repair reactions depend on cell type and developmental stage, we know surprisingly little about the mechanisms that underlie this tissue specificity. This is due, in part, to the lack of adequate study systems. This review discusses recent progress toward understanding the mechanism leading to varying rates of instability at expanded trinucleotide repeats (TNRs) in different tissues. Although they are not DNA lesions, TNRs are hotspots for genome instability because normal DNA repair activities cause changes in repeat length. The rates of expansions and contractions are readily detectable and depend on cell identity, making TNR instability a particularly convenient model system. A better understanding of this type of genome instability will provide a foundation for studying tissue-specific DNA repair more generally, which has implications in cancer and other diseases caused by mutations in the caretakers of the genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedreich’s ataxia, the most frequent inherited ataxia, is caused, in the vast majority of cases, by large GAA repeat expansions in the first intron of the frataxin gene. The normal sequence corresponds to a moderately polymorphic trinucleotide repeat with bimodal size distribution. Small normal alleles have approximately eight to nine repeats whereas a more heterogeneous mode of large normal alleles ranges from 16 to 34 GAA. The latter class accounts for ≈17% of normal alleles. To identify the origin of the expansion mutation, we analyzed linkage disequilibrium between expansion mutations or normal alleles and a haplotype of five polymorphic markers within or close to the frataxin gene; 51% of the expansions were associated with a single haplotype, and the other expansions were associated with haplotypes that could be related to the major one by mutation at a polymorphic marker or by ancient recombination. Of interest, the major haplotype associated with expansion is also the major haplotype associated with the larger alleles in the normal size range and was almost never found associated with the smaller normal alleles. The results indicate that most if not all large normal alleles derive from a single founder chromosome and that they represent a reservoir for larger expansion events, possibly through “premutation” intermediates. Indeed, we found two such alleles (42 and 60 GAA) that underwent cataclysmic expansion to pathological range in a single generation. This stepwise evolution to large trinucleotide expansions already was suggested for myotonic dystrophy and fragile X syndrome and may relate to a common mutational mechanism, despite sequence motif differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the de novo synthesis of glutathione (GSH). The catalytic subunit (GCLC) of GCL contains a GAG trinucleotide-repeat (TNR) polymorphism within the 5'-untranslated region (5'-UTR) that has been associated with various human disorders. Although several studies suggest that this variation influences GSH content, its implication for GCLC expression remains unknown. To better characterize its functional significance, we performed reporter gene assays with constructs containing the complete GCLC 5'-UTR upstream of a luciferase gene. Transfection of these vectors into various human cell lines did not reveal any significant differences between 7, 8, 9, or 10 GAG repeats, under either basal or oxidative stress conditions. To correlate these results with the previously described down-regulation induced by the C-129T GCLC promoter polymorphism, combinations of both variations were tested. Interestingly, the -129T allele down-regulates gene expression when combined with 7 GAG but not with 8, 9, or 10 GAG TNRs. This observation was confirmed in primary fibroblast cells, in which the combination of GAG TNR 7/7 and -129C/T genotypes decreased the GCLC protein level. These results provide evidence that interaction of the two variations can efficiently impair GCLC expression and thus suggest its involvement in the pathogenesis of diseases related to GSH metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myotonic dystrophy (DM), an autosomal dominant disorder mapping to human chromosome 19q13.3, is the most common neuromuscular disease in human adults.^ Following the identification of the mutation underlying the DM phenotype, an unstable (CTG)$\sb{n}$ trinucleotide repeat in the 3$\prime$ untranslated region (UTR) of a gene encoding a ser/thr protein kinase named DM protein kinase (DMPK), the study was targeted at two questions: (1) the identification of the disease-causing mechanism(s) of the unstable repeat, and at a more basic level, (2) the identification of the origin and the mechanism(s) involved in repeat instability. The first goal was to identify the pathophysiological mechanisms of the (CTG)$\sb{n}$ repeat.^ The normal repeat is transcribed but not translated; therefore, initial studies centered on the effect on RNA transcript levels. The vast majority of DM affecteds are heterozygous for the mutant expansion, so that the normal allele interferes with the analysis of the mutant allele. A quantitative allele-specific RT-PCR procedure was developed and applied to a spectrum of patient tissue samples and cell lines. Equal levels of unprocessed pre-mRNA were determined for the wild type (+) and disease (DM) alleles in skeletal muscle and cell lines of heterozygous DM patients, indicating that any nucleosome binding has no effect at the level of transcriptional initiation and transcription of the mutant DMPK locus. In contrast, processed mRNA levels from the DM allele were reduced relative to the + allele as the size of the expansion increased. The unstable repeat, therefore, impairs post-transcriptional processing of DM allele transcripts. This phenomenon has profound effects on overall DMPK locus steady-state transcript levels in cells missing a wild type allele and does not appear to be mediated by imprinting, decreased mRNA stability, generation of aberrant splice forms, or absence of polyadenylation of the mutant allele.^ In Caucasian DM subjects, the unstable repeat is in complete linkage disequlibrium with a single haplotype composed of nine alleles within and flanking DMPK over a physical distance of 30 kb. A detailed haplotype analysis of the DM region was conducted on a Nigerian (Yoruba) DM family, the only indigenous sub-Saharan DM case reported to date. Each affected member of this family had an expanded (CTG)$\sb{n}$ repeat in one of their DMPK alleles. However, unlike all other DM populations studied thus far, disassociation of the (CTG)$\sb{n}$ repeat expansion from other alleles of the putative predisposing haplotype was found. Thus, the expanded (CTG)$\sb{n}$ repeat in this family was the result of an independent mutational event. Consequently, the origin of DM is unlikely the result of a single mutational event, and the hypothesis that a single ancestral haplotype predisposes to repeat expansion is not compelling. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansion of a CTG trinucleotide repeat in the 3′ untranslated region (UTR) of DMPK, the gene encoding myotonic dystrophy protein kinase, induces the dominantly inherited neuromuscular disorder myotonic dystrophy (DM). Transcripts containing the expanded trinucleotide are abundant in differentiated cultured myoblasts, and they are spliced and polyadenylylated normally. However, mutant transcripts never reach the cytoplasm in these nonmitotic cells; instead, they form stable clusters that are tightly linked to the nuclear matrix, which can prevent effective biochemical purification of these transcripts. In DM patients, reduced DMPK protein levels, consequent to nuclear retention of mutant transcripts, are probably a cause of disease development. Formation of nuclear foci is a novel mechanism for preventing transcript export and effecting a loss of gene function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trinucleotide repeat (TNR) expansion is the cause of more than 40 types of human neurodegenerative diseases such as Huntington’s disease. Recent studies have linked TNR expansion with oxidative DNA damage and base excision repair (BER). In this research, we provided the first evidence that oxidative DNA damage can induce CAG repeat deletion/contraction via BER. We found that BER of an oxidized DNA base lesion, 8-oxoguanine in a CAG repeat tract, resulted in the formation of a CTG hairpin at the template strand. DNA polymerase β (pol b) then skipped over the hairpin creating a 5’-flap that was cleaved by flap endonuclease 1 (FEN1) leading to CAG repeat deletion. To further investigate whether BER may help to shorten an expanded TNR tract, we examined BER in a CAG repeat hairpin loop. We found that 8-oxoguanine DNA glycosylase removed the oxidized base located in the loop region of the hairpin leaving an abasic site. Apurinic/apyrimidinic (AP) endonuclease 1 then incised the 5’-end of the abasic site leaving a nick in the loop. This further converted the hairpin into an intermediate with a 3’-flap and a 5’-flap. As a 5’-3’ endonuclease, FEN1 cleaved the 5’-flap, whereas a 3’-5’ endonuclease, Mus81/Eme1, removed the 3’-flap. The coordination between FEN1 and Mus81/Eme1 ultimately resulted in removal of a CAG repeat hairpin attenuating or preventing TNR expansion. To further explore if pol β bypass of an oxidized base lesion, 5’,8-cyclodeoxyadenosine, may affect TNR instability, we examined pol β DNA synthesis in bypassing this base lesion and found that the lesion preferentially induced TNR deletion during BER and Okazaki fragment maturation. The repeat deletion was mediated by the formation of a loop in the template strand induced specifically by the damage. Pol β then skipped over the loop structure creating a 5’-flap that was efficiently removed by FEN1 leading to repeat deletion. Our study demonstrates that pol β-mediated BER plays an important role in mediating TNR deletion and removing a TNR hairpin to prevent TNR expansion. Our research provides a molecular basis for further developing BER as a target for prevention and treatment of neurodegenerative diseases caused by TNR expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragile sites appear visually as nonstaining gaps on chromosomes that are inducible by specific cell culture conditions. Expansion of CGG/ CCG repeats has been shown to be the molecular basis of all five folate-sensitive fragile sites characterized molecularly so far, i.e., FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A. In the present study we have refined the localization of the FRA10A folate-sensitive fragile site by fluorescence in situ hybridization. Sequence analysis of a BAC clone spanning FRA10A identified a single, imperfect, but polymorphic CGG repeat that is part of a CpG island in the 5'UTR of a novel gene named FRA10ACl. The number of CGG repeats varied in the population from 8 to 13. Expansions exceeding 200 repeat units were methylated in all FRA10A fragile site carriers tested. The FRA10ACl gene consists of 19 exons and is transcribed in the centromeric direction from the FRA10A repeat. The major transcript of similar to 1450 nt is ubiquitously expressed and codes for a highly conserved protein, FRA10ACl, of unknown function. Several splice variants leading to alternative 3' ends were identified (particularly in testis). These give rise to FRA10ACl proteins with altered COOH-termini. Immunofluorescence analysis of full-length, recombinant EGFP-tagged FRA10ACl protein showed that it was present exclusively in the nucleoplasm. We show that the expression of FRA10A, in parallel to the other cloned folate-sensitive fragile sites, is caused by an expansion and subsequent methylation of an unstable CGG trinucleotide repeat. Taking advantage of three cSNPs within the FRA10ACl gene we demonstrate that one allele of the gene is not transcribed in a FRA10A carrier. Our data also suggest that in the heterozygous state FRA10A is likely a benign folate-sensitive fragile site. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synpolydactyly (SPD) is a dominantly inherited congenital limb malformation. Typical cases have 3/4 finger and 4/5 toe syndactyly, with a duplicated digit in the syndactylous web, but incomplete penetrance and variable expressivity are common. The condition has recently been shown to be caused by expansions of an imperfect trinucleotide repeat sequence encoding a 15-residue polyalanine tract in HOXD13. We have studied 16 new and 4 previously published SPD families, with between 7 and 14 extra residues in the tract, to analyze the molecular basis for the observed variation in phenotype. Although there is no evidence of change in expansion size within families, even over six generations, there is a highly significant increase in the penetrance and severity of phenotype with increasing expansion size, affecting both hands (P = 0.012) and feet (P < 0.00005). Affected individuals from a family with a 14-alanine expansion, the largest so far reported, all have a strikingly similar and unusually severe limb phenotype, involving the first digits and distal carpals. Affected males from this family also have hypospadias, not previously described in SPD, but consistent with HOXD13 expression in the developing genital tubercle. The remarkable correlation between phenotype and expansion size suggests that expansion of the tract leads to a specific gain of function in the mutant HOXD13 protein, and has interesting implications for the role of polyalanine tracts in the control of transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kennedy's disease (spinobulbar muscular atrophy) is an X-linked form of motor neuron disease affecting adult males carrying a CAG trinucleotide repeat expansion within the androgen receptor gene. While expression of Kennedy's disease is thought to be confined to males carrying the causative mutation, subclinical manifestations have been reported in a few female carriers of the disease. The reasons that females are protected from the disease are not clear, especially given that all other diseases caused by CAG expansions display dominant expression. In the current study, we report the identification of a heterozygote female carrying the Kennedy's disease mutation who was clinically diagnosed with motor neuron disease. We describe analysis of CAG repeat number in this individual as well as 33 relatives within the pedigree, including two male carriers of the Kennedy's mutation. The female heterozygote carried one expanded allele of the androgen receptor gene with CAG repeats numbering in the Kennedy's disease range (44 CAGs), with the normal allele numbering in the upper-normal range (28 CAGs). The subject has two sons, one of whom carries the mutant allele of the gene and has been clinically diagnosed with Kennedy's disease, whilst the other son carries the second allele of the gene with CAGs numbering in the upper normal range and displays a normal phenotype. This coexistence of motor neuron disease and the presence of one expanded allele and one allele at the upper limit of the normal range may be a coincidence. However, we hypothesize that the expression of the Kennedy's disease mutation combined with a second allele with a large but normal CAG repeat sequence may have contributed to the motor neuron degeneration displayed in the heterozygote female and discuss the possible reasons for phenotypic expression in particular individuals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spinocerebellar ataxia type 1 (SCA1), spinocerebellar ataxia type 2 (SCA2) and Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) are three distinctive forms of autosomal dominant spinocerebellar ataxia (SCA) caused by expansions of an unstable CAG repeat localized in the coding region of the causative genes. Another related disease, dentatorubropallidoluysian atrophy (DRPLA) is also caused by an unstable triplet repeat and can present as SCA in late onset patients. We investigated the frequency of the SCA1, SCA2, MJD/SCA3 and DRPLA mutations in 328 Brazilian patients with SCA, belonging to 90 unrelated families with various patterns of inheritance and originating in different geographic regions of Brazil. We found mutations in 35 families (39%), 32 of them with a clear autosomal dominant inheritance. The frequency of the SCA1 mutation was 3% of all patients; and 6 % in the dominantly inherited SCAs. We identified the SCA2 mutation in 6% of all families and in 9% of the families with autosomal dominant inheritance. The MJD/SCA3 mutation was detected in 30 % of all patients; and in the 44% of the dominantly inherited cases. We found no DRPLA mutation. In addition, we observed variability in the frequency of the different mutations according to geographic origin of the patients, which is probably related to the distinct colonization of different parts of Brazil. These results suggest that SCA may be occasionally caused by the SCA1 and SCA2 mutations in the Brazilian population, and that the MJD/SCA3 mutation is the most common cause of dominantly inherited SCA in Brazil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dix-huit maladies humaines graves ont jusqu'ici été associées avec des expansions de trinucléotides répétés (TNR) codant soit pour des polyalanines (codées par des codons GCN répétés) soit pour des polyglutamines (codées par des codons CAG répétés) dans des protéines spécifiques. Parmi eux, la dystrophie musculaire oculopharyngée (DMOP), l’Ataxie spinocérébelleuse de type 3 (SCA3) et la maladie de Huntington (MH) sont des troubles à transmission autosomale dominante et à apparition tardive, caractérisés par la présence d'inclusions intranucléaires (IIN). Nous avons déjà identifié la mutation responsable de la DMOP comme étant une petite expansion (2 à 7 répétitions supplémentaires) du codon GCG répété du gène PABPN1. En outre, nous-mêmes ainsi que d’autres chercheurs avons identifié la présence d’événements de décalage du cadre de lecture ribosomique de -1 au niveau des codons répétés CAG des gènes ATXN3 (SCA3) et HTT (MH), entraînant ainsi la traduction de codons répétés hybrides CAG/GCA et la production d'un peptide contenant des polyalanines. Or, les données observées dans la DMOP suggèrent que la toxicité induite par les polyalanines est très sensible à leur quantité et leur longueur. Pour valider notre hypothèse de décalage du cadre de lecture dans le gène ATXN3 dans des modèles animaux, nous avons essayé de reproduire nos constatations chez la drosophile et dans des neurones de mammifères. Nos résultats montrent que l'expression transgénique de codons répétés CAG élargis dans l’ADNc de ATXN3 conduit aux événements de décalage du cadre de lecture -1, et que ces événements sont néfastes. À l'inverse, l'expression transgénique de codons répétés CAA (codant pour les polyglutamines) élargis dans l’ADNc de ATXN3 ne conduit pas aux événements de décalage du cadre de lecture -1, et n’est pas toxique. Par ailleurs, l’ARNm des codons répétés CAG élargis dans ATXN3 ne contribue pas à la toxicité observée dans nos modèles. Ces observations indiquent que l’expansion de polyglutamines dans nos modèles drosophile et de neurones de mammifères pour SCA3 ne suffit pas au développement d'un phénotype. Par conséquent, nous proposons que le décalage du cadre de lecture ribosomique -1 contribue à la toxicité associée aux répétitions CAG dans le gène ATXN3. Pour étudier le décalage du cadre de lecture -1 dans les maladies à expansion de trinucléotides CAG en général, nous avons voulu créer un anticorps capable de détecter le produit présentant ce décalage. Nous rapportons ici la caractérisation d’un anticorps polyclonal qui reconnaît sélectivement les expansions pathologiques de polyalanines dans la protéine PABPN1 impliquée dans la DMOP. En outre, notre anticorps détecte également la présence de protéines contenant des alanines dans les inclusions intranucléaires (IIN) des échantillons de patients SCA3 et MD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 59-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 39-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase b and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.