1000 resultados para triiodothyronine (T-3)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the triiodothyronine's (T-3) effects on the early growth and survival of piracanjuba (Brycon orbignyanus) produced from fertilized eggs hormone exposed The study was carried out in two phases In the first phase, eggs divided in 6 batches were Immersed in T-3 solutions 0 01, 0 05, 0 1, 0 5 ppm, 1 ppm and control (no T-3) After a 15-min immersion, eggs were transferred to incubators where larvae were kept up to 72 h after hatching Larval weight, length and yolk sac volume were determined every 12 h Sixty and 72 h after hatching, larvae exposed to 0 5 ppm T-3 were significantly heavier than the others, and those exposed to 1 ppm T-3 showed the lowest weight The yolk sac absorption was not affected In the second experimental phase, the resulting fry from the first phase were stocked into 3 boxes per treatment (5 larvae L-1) and fed with plankton, fish larvae and feed prepared in the hatchery (48% CP) in the first 3 days, plankton and feed from the 4th to the 10th day and only feed in the next (last) 5 days Fry weight, length and specific growth rate were determined at 1, 5, 10 and 15 days Survival was calculated in the last day In the 15th day, fry length did not differ among treatments but the weight of the control group was higher Higher survival in the T-3-treated groups suggested lower predation among fry The results allowed us to conclude that there was no expressive effect of T-3 on the growth, but it improved the survival of the piracanjuba progeny

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the triiodothyronine's (T-3) effects on the early growth and survival of piracanjuba (Brycon orbignyanus) produced from fertilized eggs hormone exposed The study was carried out in two phases In the first phase, eggs divided in 6 batches were Immersed in T-3 solutions 0 01, 0 05, 0 1, 0 5 ppm, 1 ppm and control (no T-3) After a 15-min immersion, eggs were transferred to incubators where larvae were kept up to 72 h after hatching Larval weight, length and yolk sac volume were determined every 12 h Sixty and 72 h after hatching, larvae exposed to 0 5 ppm T-3 were significantly heavier than the others, and those exposed to 1 ppm T-3 showed the lowest weight The yolk sac absorption was not affected In the second experimental phase, the resulting fry from the first phase were stocked into 3 boxes per treatment (5 larvae L-1) and fed with plankton, fish larvae and feed prepared in the hatchery (48% CP) in the first 3 days, plankton and feed from the 4th to the 10th day and only feed in the next (last) 5 days Fry weight, length and specific growth rate were determined at 1, 5, 10 and 15 days Survival was calculated in the last day In the 15th day, fry length did not differ among treatments but the weight of the control group was higher Higher survival in the T-3-treated groups suggested lower predation among fry The results allowed us to conclude that there was no expressive effect of T-3 on the growth, but it improved the survival of the piracanjuba progeny

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relationships among avian uncoupling protein (avUCP) mRNA expression, heat production, and thyroid hormone metabolism were investigated in 7-14-day-old broiler chicks (Gallus gallus) exposed to a low temperature (cold-exposed chicks, CE) or a thermoneutral temperature (TN). After 7 days of exposure, CE chicks exhibited higher heat production (+83%, P < 0.01), avUCP mRNA expression (+20%, P < 0.01), and circulating triiodothyronine (T-3) levels (+104%, P = 0.07) for non-statistically different body weights and feed intake between 3 and 7 days of exposure as compared to TN chicks. Plasma thyroxine (T-4) concentration was clearly decreased in CE chicks (-33%, P = 0.06). The lower hepatic inner-ring deiodination activity (-47%) and the higher renal outer-ring deiodination activity (+75%) measured in CE compared to TN chicks could partly account for their higher plasma T3 concentrations. This study describes for the first time the induction of avUCP mRNA expression by low temperature in chickens, as it has been previously shown in ducklings, and supports the possible involvement of avUCP in avian thermogenesis. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T-3) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T-3 was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T-3 effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. Methods: Rats were surgically thyroidectomized and treated with T-3 (0.3 to 100 mu g/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). Results: Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T-3 treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T-3 treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. Conclusions: The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T-3 exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Thyroid hormones (THs) act genomically to stimulate glucose transport by elevating glucose transporter (Slc2a) expression and glucose utilization by cells. However, nongenomic effects of THs are now emerging. Here, we assess how triiodothyronine (T-3) acutely affects glucose transport and the content of GLUT4, GLUT1, and GLUT3 at the surface of muscle cells, and possible interactions between T-3 and insulin action. Methods: Differentiated L6 myotubes transfected with myc-tagged Slc2a4 (L6-GLUT4myc) or Slc2a1 (L6-GLUT1myc) and wild-type L6 myotubes were studied in the following conditions: control, hypothyroid (Tx), Tx plus T3, Tx plus insulin, and Tx plus insulin and T-3. Results: Glucose uptake and GLUT4 content at the cell surface decreased in the Tx group relative to controls. T-3 treatment for 30 minutes increased glucose transport into L6-GLUT4myc cells without altering surface GLUT4 content, which increased only thereafter. The total amount of GLUT4 protein remained unchanged among the groups studied. The surface GLUT1 content of L6-GLUT1myc cells also remained unaltered after T-3 treatment; however, in these cells glucose transport was not stimulated by T-3. In wild-type L6 cells, although T-3 treatment increased the total amount of GLUT3, it did not change the surface GLUT3 content. Moreover, within 30 minutes, T-3 stimulation of glucose uptake was additive to that of insulin in L6-GLUT4myc cells. As expected, insulin elevated surface GLUT4 content and glucose uptake. However, interestingly, surface GLUT4 content remained unchanged or even dropped with T-3 plus insulin. Conclusions: These data reveal that T-3 rapidly increases glucose uptake in L6-GLUT4myc cells, which, at least for 30 minutes, did not depend on an increment in GLUT4 at the cell surface yet potentiates insulin action. We propose that this rapid T-3 effect involves activation of GLUT4 transporters at the cell surface, but cannot discount the involvement of an unknown GLUT.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The angiotensin II type 1 receptor (AT1R) is involved in the development of cardiac hypertrophy promoted by thyroid hormone. Recently, we demonstrated that triiodothyronine (T-3) rapidly increases AT1R mRNA and protein levels in cardiomyocyte cultures. However, the molecular mechanisms responsible for these rapid events are not yet known. In this study, we investigated the T-3 effect on AT1R mRNA polyadenylation in cultured cardiomyocytes as well as on the expression of microRNA-350 (miR-350), which targets AT1R mRNA. The transcriptional and translational actions mediated by T-3 on AT1R levels were also assessed. The total content of ubiquitinated proteins in cardiomyocytes treated with T-3 was investigated. Our data confirmed that T-3 rapidly raised AT1R mRNA and protein levels, as assessed by real-time PCR and western blotting respectively. The use of inhibitors of mRNA and protein synthesis prevented the rapid increase in AT1R protein levels mediated by T-3. In addition, T-3 rapidly increased the poly-A tail length of the AT1R mRNA, as determined by rapid amplification of cDNA ends poly-A test, and decreased the content of ubiquitinated proteins in cardiomyocytes. On the other hand, T-3 treatment increased miR-350 expression. In parallel with its transcriptional and translational effects on the AT1R, T-3 exerted a rapid posttranscriptional action on AT1R mRNA polyadenylation, which might be contributing to increase transcript stability, as well as on translational efficiency, resulting to the rapid increase in AT1R mRNA expression and protein levels. Finally, these results show, for the first time, that T-3 rapidly triggers distinct mechanisms, which might contribute to the regulation of AT1R levels in cardiomyocytes. Journal of Molecular Endocrinology (2012) 49, 11-20

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 mu g L-1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HIPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), ioclothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TR alpha and TR beta), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 mu g L-1 PFOS. A significant increase in NIS and Diol gene expression was observed at 200 mu g L-1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 mu g L-1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TR alpha and TR beta gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T-4) content remained unchanged, whereas triiodothyronine (T-3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and wildlife. The main aim of this study was to investigate the impact of long-term exposure to low concentrations of PFOS in zebrafish. Zebrafish fry (F-0, 14d post-fertilization, dpf) were exposed via the water for 70d to 0 (control), 10, 50 and 250 mu g L-1 PFOS, followed by a further 30d to assess recovery in clean water. The effects on survival and growth parameters and liver histopathology were assessed. Although growth suppression (weight and length) was observed in fish treated with high concentrations PFOS during the exposure period, no mortality was observed throughout the 70d experiment. Embryos and larvae (F-1) derived from maternal exposure suffered malformation and mortality. Exposure to 50 and 250 mu g L-1 PFOS could inhibit the growth of the gonads (GSI) in the female zebrafish. Histopathological alterations, primary with lipid droplets accumulation, were most prominently seen in the liver of males and the changes were not reversible, even after the fish were allowed to recover for 30d in clean water. The triiodothyronine (T-3)) levels were not significantly changed in any of the exposure groups. Hepatic vitellogenin (VTG) gene expression was significantly up-regulated in both male and female zebrafish, but the sex ratio was not altered. The overall results suggested that lower concentrations of PFOS in maternal exposure could result in offspring deformation and mortality. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The endocrine response of crucian carp injected intraperitoneally with extracted microcystins (MC) was investigated in this study. Fish were injected intraperitoneally either with 0.75% NaCl (control) and Microcystis extract corresponding to 150 and 600 mu g microcystins per kg body weight. The plasma levels of triiodothyronine (T-3), thyroxine (T-4), free triiodothyronine (FT3), free thyroxine (FT4), and cortisol were determined at 0, 1, 3, 12, 24. and 48 h post-administration of MC-containing extract. Treated fish displayed abnormal behaviors, Such as a startle response and disoriented swimming, as well as changes in ventilation rates. Plasma cortisol concentrations of fish in both dose groups significantly increased after administration of extracted MC and remained high throughout the experiment, which suggested that MC elicited a stress response in treated fish. The profiles of cortisol changes in treated fish appeared to be dose dependent, indicating that fish in the high dose group experienced greater MC-incluced disturbance. Mortality occurred after 12 h in the high dose group. Plasma levels of T-4, T-3, FT4, and FT3 did not vary significantly between the control fish. In contrast to this, fish exposed to MC-containing extract showed significant declines in T-3, FT4, and FT3 levels in a dose-depenclent manner throughout the experiment. Plasma T4 levels, however, did not vary significantly in the low dose group, whereas they decreased significantly it 48 h post injection in the high dose group. This study demonstrates that administration of microcystins-containing extract causes a stress response and reduces the plasma levels of thyroid hormones in crucian carp. These results illustrate that microcystins exerted potent effects on the endocrine system of crucian carp, through activating their hypothalamus-pituitary- interrenal axis and disturbing thyroid function. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid hormones (THs) play an important role in the normal development and physiological functions in fish. Environmental chemicals may adversely affect thyroid function by disturbing gene transcription. Perfluorooctane sulfonate (PFOS), a persistent compound, is widely distributed in the aquatic environment and wildlife. In the present study, we investigated whether PFOS could disrupt the hypothalamic– pituitary–thyroid (HPT) axis. Zebrafish embryos were exposed to various concentrations of PFOS (0, 100, 200 and 400 lg L 1) and gene expression patterns were examined 15 d post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid peroxidase (TPO), transthyretin (TTR), iodothyronine deiodinases (Dio1 and Dio2) and thyroid receptor (TRa and TRb), was quantitatively measured using real-time PCR. The gene expression levels of CRF and TSH were significantly up-regulated and down-regulated, respectively, upon exposure to 200 and 400 lg L 1 PFOS. A significant increase in NIS and Dio1 gene expression was observed at 200 lg L 1 PFOS exposure, while TG gene expression was down-regulated at 200 and 400 lg L 1 PFOS exposure. TTR gene expression was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of TRa and TRb gene expression, respectively, was observed upon exposure to PFOS. The whole body thyroxine (T4) content remained unchanged, whereas triiodothyronine (T3) levels were significantly increased, which could directly reflect disrupted thyroid hormone status after PFOS exposure. The overall results indicated that PFOS exposure could alter gene expression in the HPT axis and that mechanisms of disruption of thyroid status by PFOS could occur at several steps in the synthesis, regulation, and action of thyroid hormones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T-4) into selenocysteines, can catalyze the deiodination of T-4 to 3,5,3'-triiodothyronine (T-3) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 mM, respectively, and V-m value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a K-i value of approximately 120 muM at 2.0 muM of T-4 concentration, revealing that PTU was a competitive inhibitor for DTT, (C) 2001 Academic Press.