12 resultados para trigeneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trigeneration systems have been used with advantage in the last years in distributed electricity generation systems as a function of a growth of natural gas pipeline network distribution system, tax incentives, and energy regulation policies. Typically, a trigeneration system is used to produce electrical power simultaneously with supplying heating and cooling load by recovering the combustion products thermal power content that otherwise would be driven to atmosphere. Concerning that, two small scale trigeneration plants have been tested for overall efficiency evaluation and operational comparison. The first system is based on a 30 kW (ISO) natural gas powered microturbine, and the second one uses a 26 kW natural gas powered internal combustion engine coupled to an electrical generator as a prime mover. The stack gases from both machines were directed to a 17.6 kW ammonia-water absorption refrigeration chiller for producing chilled water first and next to a water heat recovery boiler in order to produce hot water. Experimental results are presented along with relevant system operational parameters for appropriate operation including natural gas consumption, net electrical and thermal power production, i.e., hot and cold water production rates, primary energy saving index, and the energy utilization factor over total and partial electrical load operational conditions. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents design and construction of a tri-generation system (thermal efficiency, 63%), powered by neat nonedible plant oils (jatropha, pongamia and jojoba oil or standard diesel fuel), besides studies on plant performance and economics. Proposed plant consumes fuel (3 l/h) and produce ice (40 kg/h) by means of an adsorption refrigerator powered from the engine waste jacket water heat. Potential savings in green house gas (GHG) emissions of trigeneration system in comparison to cogeneration (or single generation) has also been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The paper aims to design and prove the concept of micro-industry using trigeneration fuelled by biomass, for sustainable development in rural NW India. Design/methodology/approach: This is being tested at village Malunga, near Jodhpur in Rajasthan. The system components comprise burning of waste biomass for steam generation and its use for power generation, cooling system for fruit ripening and the use of steam for producing distilled water. Site was selected taking into account the local economic and social needs, biomass resources available from agricultural activities, and the presence of a NGO which is competent to facilitate running of the enterprise. The trigeneration system was designed to integrate off-the-shelf equipment for power generation using boilers of approximate total capacity 1 tonne of fuel per hour, and a back-pressure steam turbo-generator (200 kW). Cooling is provided by a vapour absorption machine (VAM). Findings: The financial analysis indicates a payback time of less than two years. Nevertheless, this is sensitive to market fluctuations and availabilities of raw materials. Originality/value: Although comparable trigeneration systems already exist in large food processing industries and in space heating and cooling applications, they have not previously been used for rural micro-industry. The small-scale (1-2 m3/h output) multiple effect distillation (3 effect plus condenser) unit has not previously been deployed at field level. © Emerald Group Publishing Limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portugal é um país dependente da energia do exterior, devido à elevada percentagem de consumo de energia a partir de fontes primárias, como por exemplo o gasóleo. Para colmatar este cenário, têm vindo a criar-se incentivos para o uso de energias renováveis e para intensificação de medidas de eficiência energética, como os sistemas de cogeração, de forma a tornar os processos industriais nacionais mais autónomos e mais competitivos. O presente trabalho, centra-se na determinação do potencial térmico disponível na central de trigeração da empresa Monteiro, Ribas-Indústria, SA, com a finalidade de identificar a quantidade de energia não utilizada, com vista ao aproveitamento dessa mesma energia nos processos mais problemáticos da empresa. Verificou-se que a água líquida era a fonte de maior energia não aproveitada, representando cerca de 30%, relativamente à energia disponível na água de refrigeração que é de 1890 kW. Assim, perante este facto, fez-se um estudo em dois setores autónomos da empresa, o setor dos revestimentos e o setor dos componentes técnicos da borracha. Pretendeu-se propor medidas para melhorar os seus processos produtivos, aproveitando essa energia. Para o efeito foi projetado um permutador de calor de placas com necessidade energética de 131,4 MWh, no setor dos revestimentos e um permutador compacto no setor de produção de placas de borracha, necessitando de uma energia de 335,2 MWh. Face à energia disponível na central de trigeração, de 161,9 MWh, verifica-se que esta apenas poderá ser aproveitada no setor dos revestimentos. Para tornar este objetivo real, a empresa Monteiro, Ribas- Indústria, SA necessitaria de efetuar um investimento no total de 49.390€. Além disso, foi contabilizado o rendimento das caldeiras da central térmica e da cogeração, ambas pelo método direto, apresentando estas os valores de 72% e 42%, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El alcance de este proyecto es dimensionar un sistema de trigeneración para una industria papelera. El proyecto se realizará en base a la propuesta de la nueva reforma de la ley energética, por la cual no se podrá vender la energía eléctrica generada a la red sino que toda la energía generada ha de ser utilizada de forma exclusiva para autoconsumo. En primer lugar se desarrolla un proceso de selección de los equipos y tecnologías para la cogeneración, que posteriormente servirá para el dimensionamiento de la planta, en el cual se elegirá la tecnología oportuna para la generación de energía eléctrica y energía térmica, tanto en forma de frío como de calor. Con este estudio se podrá calcular el ahorro conseguido por el nuevo sistema propuesto, comparado con los costes de la generación por sistemas convencionales y desde ese ahorro, analizar la rentabilidad y viabilidad del proyecto en función de la inversión inicial que supone dicho proyecto. Abstract The scope of this project is to measure a trigeneration system for paper industry. The project will be based on the proposal of the new reform of the energy law, by which the electricity generated to the network may not be sold but that all the generated energy has to be used exclusively for self-consumption. First of all the study develops a process of selection of the equipment and technologies for cogeneration, which subsequently will be used for the dimensioning of the plant, the result will be an election of the appropriate technology for the generation of electric power and heat energy, both in the form of cold and heat. With this study the savings achieved by the new proposed system will be estimated, compared with costs of conventional generation and from these savings, analized for profitability and viability of the project on the basis of the initial investment involved in this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la actualidad la generación y utilización eficientes de la energía es el vector principal que permite el desarrollo sostenible en el marco ambiental, económico, seguro y rentable. Todo ello genera una necesidad en el ser humano de guiar a los avances tecnológicos hacia una manera cada vez más eficiente de generar nuestras necesidades básicas, como es el caso de la energía. La cogeneración ha sido uno de los resultados positivos en la búsqueda de la eficiencia energética, debido a tratarse de un sistema de producción simultánea de calor y electricidad partiendo inicialmente de un combustible como energía primaria. Es por ello, que en el presente proyecto se estudia, analiza y propone la posibilidad de implantar sistemas de cogeneración en el sector residencial, un sector que podría beneficiarse enormemente de los beneficios que ofrecen dichos sistemas. En una primera parte se analiza la tecnología de cogeneración y sus variantes, como son, la microcogeneración y la trigeneración. También se muestra la evolución legislativa que han sufrido estos sistemas. En una segunda parte se ha tomado un caso modelo, un edificio de 72 viviendas con sistema de calderas centralizado convencional, y se ha estudiado la posibilidad de implantar un sistema de cogeneración. Para ello se han calculado previamente las demandas energéticas del edificio y se han ido proponiendo diferentes modos de operación para cubrir dichas demandas por medio de sistemas de microcogeneración o cogeneración. Finalmente, una vez valoradas las opciones se muestra la elegida y se efectúa un análisis económico ABSTRACT Nowadays the efficient generation of energy is the main vector that allows sustainable development in environmental, economic, safety and cost effectiveness. All this generates a need in humans to lead to new technological advances towards an even more efficient way to generate our basic needs, such as energy. Cogeneration has been one of the positive results in the search for energy efficiency, due to the fact that it is a system of simultaneous production of heat and electricity initially starting from a primary energy fuel. It is for this reason that this project studies, analyzes and proposes the possibility of introducing cogeneration systems in the residential sector, a sector that could benefit greatly from the benefits offered by these systems. In the first part, cogeneration technology and its variants are analyzed, like, micro-cogeneration and trigeneration. The legislative evolutions that have suffered these systems are also displayed. In a second part, a model case has been taken; a building of 72 flats with conventional centralized boiler system, the possibility of introducing a cogeneration system has been studied. Previously the energy demands of the building have been calculated proposing different operating modes to meet those demands through micro-CHP or cogeneration systems. Finally, once the options are valued the chosen one is shown and an economic analysis is performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass production, conversion and utilization can be done locally with value addition to small farmers. However, new technical inputs are needed for profitable exploitation of biomass within the constraints related to land, water and skill availability and to provide higher quality of energy needed for rural industries. Trigeneration, which is generating energy simultaneously in three forms (electric power, heat for processing and refrigeration), helps in fully utilizing the stored energy in biomass and would be most appropriate for micro enterprises. This paper presents concepts in terms of trigeneration systems feasible for rural areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this report is to give an overview of the results of Work Package 5 “Engineering Tools”. In this workpackage numerical tools have been developed for all relevant CHCP systems in the PolySMART demonstration projects (WP3). First, existing simulation platforms have been described and specific characteristics have been identified. Several different simulation platforms are in principle appropriate for the needs in the PolySMART project. The result is an evaluation of available simulation and engineering tools for CHCP simulation, and an agreement upon a common simulation environment within the PolySMART project. Next, numerical models for components in the demonstration projects have been developed. These models are available to the PolySMART consortium. Of all modeled components an overall and detailed working principle is formulated, including a parameter list and (in some cases) a control strategy. Finally, for four CHCP systems in the PolySMART project, a system simulation model has been developed. For each system simulation a separate deliverable is available (D5.5b to D5.5e) These deliverables replace deliverable 5.4 ‘system models’. The numerical models for components and systems developed in the Polysmart project form a valuable basis for the component development and optimisation and for the system optimisation, both within and outside the project. Developers and researchers interested in more information about specific models can refer to the institutes and contact persons involved in the model development. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The PolySMART demonstration system SP1b has been modeled in TRNSYS and calibrated against monitored data. The system is an example of distributed cooling with centralized CHP, where the driving heat is delivered via the district heating network. The system pre-cools the cooling water for the head office of Borlänge municipality, for which the main cooling is supplied by a 200 kW compression chiller. The SP1b system thus provides pre-cooling. It consists of ClimateWell TDC with nominal capacity of 10 kW together with a dry cooler for recooling and heat exchangers in the cooling and driving circuits. The cooling system is only operated from 06:00 to 17:00 during working days, and the cooling season is generally from mid May to mid September. The nominal operating conditions of the main chiller are 12/15°C. The main aims of this simulation study were to: reduce the electricity consumption, and if possible to improve the thermal COP and capacity at the same time; and to study how the system would perform with different boundary conditions such as climate and load. The calibration of the system model was made in three stages: estimation of parameters based on manufacturer data and dimensions of the system; calibration of each circuit (pipes and heat exchangers) separately using steady state point; and finally calibration of the complete model in terms of thermal and electrical energy as well as running times, for a five day time series of data with one minute average data values. All the performance figures were with 3% of the measured values apart from the running time for the driving circuit that was 4% different. However, the performance figures for this base case system for the complete cooling season of mid-May to midSeptember were significantly better than those for the monitoring data. This was attributed to long periods when the monitored system was not in operation and due to a control parameter that hindered cold delivery at certain times. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portugal é um país dependente da energia do exterior, devido à elevada percentagem de consumo de energia a partir de fontes primárias, como por exemplo o gasóleo. Para colmatar este cenário, têm vindo a criar-se incentivos para o uso de energias renováveis e para intensificação de medidas de eficiência energética, como os sistemas de cogeração, de forma a tornar os processos industriais nacionais mais autónomos e mais competitivos. O presente trabalho, centra-se na avaliação do chiller de absorção na central de trigeração da empresa Monteiro, Ribas-Indústria, SA, com a finalidade de identificar algum problema no funcionamento do chiller. Após efetuado o estudo do chiller, verificou-se que o coeficiente de performance do chiller apresenta valores que variam entre 0,75 e 0,81, que comparado com o valor especificado, não apresenta grande diferença. No que toca à potência do chiller, esta apresentou valores entre 948 e 1045 kW. Estes valores estavam bem abaixo da potência especificada pelos fornecedores. Assim, pretendeu-se propor medidas para melhor a potência obtida. Para o efeito foi sugerido o aquecimento da corrente que atua como fonte de calor para o chiller, a corrente de água quente. Embora a empresa apresente a solução para o problema, um permutador de vapor para o aquecimento da corrente de água quente, este não se encontra em funcionamento contínuo, levando a uma potência mais baixa.