63 resultados para traversal
Resumo:
Business Process Management (BPM) has increased in popularity and maturity in recent years. Large enterprises engage use process management approaches to model, manage and refine repositories of process models that detail the whole enterprise. These process models can run to the thousands in number, and may contain large hierarchies of tasks and control structures that become cumbersome to maintain. Tools are therefore needed to effectively traverse this process model space in an efficient manner, otherwise the repositories remain hard to use, and thus are lowered in their effectiveness. In this paper we analyse a range of BPM tools for their effectiveness in handling large process models. We establish that the present set of commercial tools is lacking in key areas regarding visualisation of, and interaction with, large process models. We then present six tool functionalities for the development of advanced business process visualisation and interaction, presenting a design for a tool that will exploit the latest advances in 2D and 3D computer graphics to enable fast and efficient search, traversal and modification of process models.
Resumo:
Applications that operate on meshes are very popular in High Performance Computing (HPC) environments. In the past, many techniques have been developed in order to optimize the memory accesses for these datasets. Different loop transformations and domain decompositions are com- monly used for structured meshes. However, unstructured grids are more challenging. The memory accesses, based on the mesh connectivity, do not map well to the usual lin- ear memory model. This work presents a method to improve the memory performance which is suitable for HPC codes that operate on meshes. We develop a method to adjust the sequence in which the data are used inside the algorithm, by means of traversing and sorting the mesh. This sorted mesh can be transferred sequentially to the lower memory levels and allows for minimum data transfer requirements. The method also reduces the lower memory requirements dra- matically: up to 63% of the L1 cache misses are removed in a traditional cache system. We have obtained speedups of up to 2.58 on memory operations as measured in a general- purpose CPU. An improvement is also observed with se- quential access memories, where we have observed reduc- tions of up to 99% in the required low-level memory size.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
In this paper, the train scheduling problem is modelled as a blocking parallel-machine job shop scheduling (BPMJSS) problem. In the model, trains, single-track sections and multiple-track sections, respectively, are synonymous with jobs, single machines and parallel machines, and an operation is regarded as the movement/traversal of a train across a section. Due to the lack of buffer space, the real-life case should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold the train until next section on the routing becomes available. Based on literature review and our analysis, it is very hard to find a feasible complete schedule directly for BPMJSS problems. Firstly, a parallel-machine job-shop-scheduling (PMJSS) problem is solved by an improved shifting bottleneck procedure (SBP) algorithm without considering blocking conditions. Inspired by the proposed SBP algorithm, feasibility satisfaction procedure (FSP) algorithm is developed to solve and analyse the BPMJSS problem, by an alternative graph model that is an extension of the classical disjunctive graph models. The proposed algorithms have been implemented and validated using real-world data from Queensland Rail. Sensitivity analysis has been applied by considering train length, upgrading track sections, increasing train speed and changing bottleneck sections. The outcomes show that the proposed methodology would be a very useful tool for the real-life train scheduling problems
Resumo:
Many large coal mining operations in Australia rely heavily on the rail network to transport coal from mines to coal terminals at ports for shipment. Over the last few years, due to the fast growing demand, the coal rail network is becoming one of the worst industrial bottlenecks in Australia. As a result, this provides great incentives for pursuing better optimisation and control strategies for the operation of the whole rail transportation system under network and terminal capacity constraints. This PhD research aims to achieve a significant efficiency improvement in a coal rail network on the basis of the development of standard modelling approaches and generic solution techniques. Generally, the train scheduling problem can be modelled as a Blocking Parallel- Machine Job-Shop Scheduling (BPMJSS) problem. In a BPMJSS model for train scheduling, trains and sections respectively are synonymous with jobs and machines and an operation is regarded as the movement/traversal of a train across a section. To begin, an improved shifting bottleneck procedure algorithm combined with metaheuristics has been developed to efficiently solve the Parallel-Machine Job- Shop Scheduling (PMJSS) problems without the blocking conditions. Due to the lack of buffer space, the real-life train scheduling should consider blocking or hold-while-wait constraints, which means that a track section cannot release and must hold a train until the next section on the routing becomes available. As a consequence, the problem has been considered as BPMJSS with the blocking conditions. To develop efficient solution techniques for BPMJSS, extensive studies on the nonclassical scheduling problems regarding the various buffer conditions (i.e. blocking, no-wait, limited-buffer, unlimited-buffer and combined-buffer) have been done. In this procedure, an alternative graph as an extension of the classical disjunctive graph is developed and specially designed for the non-classical scheduling problems such as the blocking flow-shop scheduling (BFSS), no-wait flow-shop scheduling (NWFSS), and blocking job-shop scheduling (BJSS) problems. By exploring the blocking characteristics based on the alternative graph, a new algorithm called the topological-sequence algorithm is developed for solving the non-classical scheduling problems. To indicate the preeminence of the proposed algorithm, we compare it with two known algorithms (i.e. Recursive Procedure and Directed Graph) in the literature. Moreover, we define a new type of non-classical scheduling problem, called combined-buffer flow-shop scheduling (CBFSS), which covers four extreme cases: the classical FSS (FSS) with infinite buffer, the blocking FSS (BFSS) with no buffer, the no-wait FSS (NWFSS) and the limited-buffer FSS (LBFSS). After exploring the structural properties of CBFSS, we propose an innovative constructive algorithm named the LK algorithm to construct the feasible CBFSS schedule. Detailed numerical illustrations for the various cases are presented and analysed. By adjusting only the attributes in the data input, the proposed LK algorithm is generic and enables the construction of the feasible schedules for many types of non-classical scheduling problems with different buffer constraints. Inspired by the shifting bottleneck procedure algorithm for PMJSS and characteristic analysis based on the alternative graph for non-classical scheduling problems, a new constructive algorithm called the Feasibility Satisfaction Procedure (FSP) is proposed to obtain the feasible BPMJSS solution. A real-world train scheduling case is used for illustrating and comparing the PMJSS and BPMJSS models. Some real-life applications including considering the train length, upgrading the track sections, accelerating a tardy train and changing the bottleneck sections are discussed. Furthermore, the BPMJSS model is generalised to be a No-Wait Blocking Parallel- Machine Job-Shop Scheduling (NWBPMJSS) problem for scheduling the trains with priorities, in which prioritised trains such as express passenger trains are considered simultaneously with non-prioritised trains such as freight trains. In this case, no-wait conditions, which are more restrictive constraints than blocking constraints, arise when considering the prioritised trains that should traverse continuously without any interruption or any unplanned pauses because of the high cost of waiting during travel. In comparison, non-prioritised trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available. Based on the FSP algorithm, a more generic algorithm called the SE algorithm is developed to solve a class of train scheduling problems in terms of different conditions in train scheduling environments. To construct the feasible train schedule, the proposed SE algorithm consists of many individual modules including the feasibility-satisfaction procedure, time-determination procedure, tune-up procedure and conflict-resolve procedure algorithms. To find a good train schedule, a two-stage hybrid heuristic algorithm called the SE-BIH algorithm is developed by combining the constructive heuristic (i.e. the SE algorithm) and the local-search heuristic (i.e. the Best-Insertion- Heuristic algorithm). To optimise the train schedule, a three-stage algorithm called the SE-BIH-TS algorithm is developed by combining the tabu search (TS) metaheuristic with the SE-BIH algorithm. Finally, a case study is performed for a complex real-world coal rail network under network and terminal capacity constraints. The computational results validate that the proposed methodology would be very promising because it can be applied as a fundamental tool for modelling and solving many real-world scheduling problems.
Resumo:
A complex attack is a sequence of temporally and spatially separated legal and illegal actions each of which can be detected by various IDS but as a whole they constitute a powerful attack. IDS fall short of detecting and modeling complex attacks therefore new methods are required. This paper presents a formal methodology for modeling and detection of complex attacks in three phases: (1) we extend basic attack tree (AT) approach to capture temporal dependencies between components and expiration of an attack, (2) using enhanced AT we build a tree automaton which accepts a sequence of actions from input message streams from various sources if there is a traversal of an AT from leaves to root, and (3) we show how to construct an enhanced parallel automaton that has each tree automaton as a subroutine. We use simulation to test our methods, and provide a case study of representing attacks in WLANs.
Resumo:
Video presented as part of ACIS 2009 conference in Melbourne Australia. Movie showing the execution of a small prototype Hypbolic projection of a process model. Useful for the traversal of large process models, as the entire hierarchy can be visualised as a whole, maintaining a sense of context while moving through such complex topologies. Related ACIS Conference paper is at: http://eprints.qut.edu.au/29296/
Resumo:
Situated on Youtube, and shown in various locations. In this video we show a 3D mock up of a personal house purchasing process. A path traversal metaphor is used to give a sense of progression along the process stages. The intention is to be able to use console devices like an Xbox to consume business processes. This is so businesses can expose their internal processes to consumers using sophisticated user interfaces. The demonstrator was developed using Microsoft XNA, with assistance from the Suncorp Bank and the Smart Services CRC. More information at: www.bpmve.org
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
The Morse-Smale complex is a topological structure that captures the behavior of the gradient of a scalar function on a manifold. This paper discusses scalable techniques to compute the Morse-Smale complex of scalar functions defined on large three-dimensional structured grids. Computing the Morse-Smale complex of three-dimensional domains is challenging as compared to two-dimensional domains because of the non-trivial structure introduced by the two types of saddle criticalities. We present a parallel shared-memory algorithm to compute the Morse-Smale complex based on Forman's discrete Morse theory. The algorithm achieves scalability via synergistic use of the CPU and the GPU. We first prove that the discrete gradient on the domain can be computed independently for each cell and hence can be implemented on the GPU. Second, we describe a two-step graph traversal algorithm to compute the 1-saddle-2-saddle connections efficiently and in parallel on the CPU. Simultaneously, the extremasaddle connections are computed using a tree traversal algorithm on the GPU.
Resumo:
A new algorithm for compiling pattern matching is presented. Different from the traditional traversal-based approaches, it can represent a sequence of patterns as an integer by an encoding method and translate equations into case-expressions. The algorithm is simple to implement, and efficient for a kind of patterns, i.e. simple and dense patterns. This method can be complementary to traditional approaches.
Resumo:
开发涉及非线性数据结构算法程序的循环不变式一直是形式化方法的难点。本文使用PAR方法开发循环不变式的新策略,对后序遍历二叉树问题循环不变式的开发使用递归定义技术,得到了该问题循环不变式的简单精确的表达形式,简化了算法程序的推导和证明过程;利用PAR平台提供的抽象程序设计语言Ap1a中的数据抽象机制,使所得的算法程序结构简洁清晰且易于证明;最后,使用Dijkstra-Gries标准程序证明法形式证明了该问题的核心算法程序(只有4行代码),并使用PAR平台将Apla程序转换成正确的C++代码。实例的成功进一步说明PAR方法提供的循环不变式的开发技术对推导和证明非线性数据结构算法程序的有效性。
Resumo:
作者设计并实现了一个基于多变元逐步回归的二叉树分类器.在树结构和特征子集的选择中采用了穷举法,比有限制条件的选择更合理更优化.用 FORTRAN 语言实现的“遍历”二叉树,充分利用了 FORTRAN 处理可调数组的能力,并采取适当技巧,从而最大限度地利用了计算机内存.该通用分类器,可用来对任何具有统计数据的模式进行分类.在对白血球的分类中,取得了五类97%,六类92.2%的高识别率.
Resumo:
In our previous work, we developed TRAFFIC(X), a specification language for modeling bi-directional network flows featuring a type system with constrained polymorphism. In this paper, we present two ways to customize the constraint system: (1) when using linear inequality constraints for the constraint system, TRAFFIC(X) can describe flows with numeric properties such as MTU (maximum transmission unit), RTT (round trip time), traversal order, and bandwidth allocation over parallel paths; (2) when using Boolean predicate constraints for the constraint system, TRAFFIC(X) can describe routing policies of an IP network. These examples illustrate how to use the customized type system.