925 resultados para travel time prediction
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.
Resumo:
This dissertation aimed to improve travel time estimation for the purpose of transportation planning by developing a travel time estimation method that incorporates the effects of signal timing plans, which were difficult to consider in planning models. For this purpose, an analytical model has been developed. The model parameters were calibrated based on data from CORSIM microscopic simulation, with signal timing plans optimized using the TRANSYT-7F software. Independent variables in the model are link length, free-flow speed, and traffic volumes from the competing turning movements. The developed model has three advantages compared to traditional link-based or node-based models. First, the model considers the influence of signal timing plans for a variety of traffic volume combinations without requiring signal timing information as input. Second, the model describes the non-uniform spatial distribution of delay along a link, this being able to estimate the impacts of queues at different upstream locations of an intersection and attribute delays to a subject link and upstream link. Third, the model shows promise of improving the accuracy of travel time prediction. The mean absolute percentage error (MAPE) of the model is 13% for a set of field data from Minnesota Department of Transportation (MDOT); this is close to the MAPE of uniform delay in the HCM 2000 method (11%). The HCM is the industrial accepted analytical model in the existing literature, but it requires signal timing information as input for calculating delays. The developed model also outperforms the HCM 2000 method for a set of Miami-Dade County data that represent congested traffic conditions, with a MAPE of 29%, compared to 31% of the HCM 2000 method. The advantages of the proposed model make it feasible for application to a large network without the burden of signal timing input, while improving the accuracy of travel time estimation. An assignment model with the developed travel time estimation method has been implemented in a South Florida planning model, which improved assignment results.
Resumo:
The value given by commuters to the variability of travel times is empirically analysed using stated preference data from Barcelona (Spain). Respondents are asked to choose between alternatives that differ in terms of cost, average travel time, variability of travel times and departure time. Different specifications of a scheduling choice model are used to measure the influence of various socioeconomic characteristics. Our results show that travel time variability.
Resumo:
Proteins are commonly identified through enzymatic digestion and generation of short sequence tags or fingerprints of peptide masses by mass spectrometry. Separation methods, such as liquid chromatography and electrophoresis, are often used to fractionate complex protein or peptide mixtures and these separations also provide information on the different species, such as molecular weight and isoelectric point from electrophoresis and hydrophobicity in reversed-phase chromatography. These are also properties that can be predicted from amino acid sequences derived from genomic sequences and used in protein identification. This chapter reviews recently introduced methods based on retention time prediction to extract information from chromatographic separations and the applications to protein identification in organisms with small and large genomes. Novel data on retention time prediction of posttranslationally modified peptides is also presented.
Resumo:
In this paper we investigate how attitudes to health and exercise in connection with cycling influence the estimation of values of travel time savings in different kinds of bicycle environments (mixed traffic, bicycle lane in the road way, bicycle path next to the road, and bicycle path not in connection with the road). The results, based on two Swedish stated choice studies, suggest that the values of travel time savings are lower when cycling in better conditions. Surprisingly, the respondents do not consider cycling on a path next to the road worse than cycling on a path not in connection to the road, indicating that they do not take traffic noise and air pollution into account in their decision to cycle. No difference can be found between cycling on a road way (mixed traffic) and cycling in a bicycle lane in the road way. The results also indicate that respondents that include health aspects in their choice to cycle have lower value of travel time savings for cycling than respondents that state that health aspects are of less importance, at least when cycling on a bicycle path. The appraisals of travel time savings regarding cycling also differ a lot depending on the respondents’ alternative travel mode. The individuals who stated that they will take the car if they do not cycle have a much higher valuation of travel time savings than the persons stating public transport as the main alternative to cycling.
Resumo:
Predictability is related to the uncertainty in the outcome of future events during the evolution of the state of a system. The cluster weighted modeling (CWM) is interpreted as a tool to detect such an uncertainty and used it in spatially distributed systems. As such, the simple prediction algorithm in conjunction with the CWM forms a powerful set of methods to relate predictability and dimension.
Resumo:
Forecasting, for obvious reasons, often become the most important goal to be achieved. For spatially extended systems (e.g. atmospheric system) where the local nonlinearities lead to the most unpredictable chaotic evolution, it is highly desirable to have a simple diagnostic tool to identify regions of predictable behaviour. In this paper, we discuss the use of the bred vector (BV) dimension, a recently introduced statistics, to identify the regimes where a finite time forecast is feasible. Using the tools from dynamical systems theory and Bayesian modelling, we show the finite time predictability in two-dimensional coupled map lattices in the regions of low BV dimension. © Indian Academy of Sciences.
Resumo:
The purpose of this study was to evaluate summer and fall residency and habitat selection by gray whales, Eschrichtius robustus, together with the biomass of benthic amphipod prey on the coastal feeding grounds along the Chukotka Peninsula. Thirteen gray whales were instrumented with satellite transmitters in September 2006 near the Chukotka Peninsula, Russia. Nine transmitters provided positions from whales for up to 81 days. The whales travelled within 5 km of the Chukotka coast for most of the period they were tracked with only occasional movements offshore. The average daily travel speeds were 23 km/day (range 9-53 km/day). Four of the whales had daily average travel speeds <1 km/day suggesting strong fidelity to the study area. The area containing 95% of the locations for individual whales during biweekly periods was on average 13,027 km**2 (range 7,097-15,896 km**2). More than 65% of all locations were in water <30 m, and between 45 and 70% of biweekly kernel home ranges were located in depths between 31 and 50 m. Benthic density of amphipods within the Bering Strait at depths <50 m was on average ~54 g wet wt/m**2 in 2006. It is likely that the abundant benthic biomass is more than sufficient forage to support the current gray whale population. The use of satellite telemetry in this study quantifies space use and movement patterns of gray whales along the Chukotka coast and identifies key feeding areas.
Resumo:
The present article shows a procedure to predict the flutter speed based on real-time tuning of a quasi non-linear aeroelastic model. A two-dimensional non-linear (freeplay) aeroeslastic model is implemented inMatLab/Simulink with incompressible aerodynamic conditions. A comparison with real compressible conditions is provided. Once the numerical validation is accomplished, a parametric aeroelastic model is built in order to describe the proposed procedure and contribute to reduce the number of flight hours needed to expand the flutter envelope.
Resumo:
Mode of access: Internet.