993 resultados para trapping method
Resumo:
Quantification and speciation of volatile selenium (Se) fluxes in remote areas has not been feasible previously, due to the absence of a simple and easily transportable trapping technique that preserves speciation. This paper presents a chemo-trapping method with nitric acid (HNO3) for volatile Se species, which preserves speciation of trapped compounds. The recovery and speciation of dimethylselenide (DMSe) and dimethyl diselenide (DMDSe) entrained through both concentrated nitric acid and hydrogen peroxide (H2O2) were compared by HPLC-ICP-MS and HPLC-HG-AFS analyses. It was demonstrated that trap reproducibility was better for nitric acid and a recovery of 65.2 +/- 1.9% for DMSe and 81.3 +/- 3.9% for DMDSe was found in nitric acid traps. HPLC-ES-MS identified dimethyl selenoxide (DMSeO) as the trapped product of DMSe. Methylseleninic acid (MSA) was identified to be the single product of DMDSe trapping. These oxidized derivatives have a high stability and low volatility, which makes nitric acid a highly attractive trapping liquid for volatile Se species and enables reconstruction of the speciation of those species. The presented trapping method is simple, quantifiable, reproducible, and robust and can potentially be applied to qualitatively and quantitatively study Se volatilization in a wide range of natural environments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Products from the spontaneous reaction of a long-chain arenediazonium salt, 2,6-dimethyl-4-hexadecylbenzenediazonium tetrafluoroborate(16-ArN2BF4), in aqueous micellar solutions of sodium dodecyl sulfate (SDS)? are used to estimate the local concentration of chloride and bromide ions at the micellar surface. The arenediazonium ion, 16-ArN2+, which is totally bound to the SDS micelle, reacts by rate-determining loss of N-2 to give an aryl cation that traps available nucleophiles, i,e., H2O, Cl-, and Br-, to give stable phenol, 16-ArOH, and halobenzene products, 16-ArCl and 16-ArBr, respectively. Product yields, determined by HPLC, are related to local concentrations using calibration curves obtained from independent standards. The local concentrations determined by this method are consistent with co-ion concentrations calculated, using a cell model, by numerical integration of the Poisson-Boltzmann equation (PBE) taking into account salt-induced micellar growth. The salt dependence of the intel facial concentrations of Cl- and Br- are identical. indicating no specific interactions in the interfacial co-ion compartment. PBE calculations predict that, in micellar SDS, increasing the concentration of a particular halide salt (NaX) at constant concentration of another halide (NaY) should result in an increase in the local concentrations of both co-ions. Using this chemical-trapping method, this prediction was demonstrated experimentally.
Resumo:
Interfacial concentrations of chloride and bromide ions, with Li+, Na+, K+, Rb+, Cs+, trimethylammonium (TMA(+)), Ca2+, and Mg2+ as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF4) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br- (Cl-) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
The population dynamics of long-lived birds are thought to be very sensitive to changes in adult survival. However, where natal philopatry is low, recruitment from the larger metapopulation may have the strongest effect on population growth rate even in long-lived species. Here, we illustrate such a situation where changes in a seabird colony size appeared to be the consequence of changes in recruitment. We studied the population dynamics of a declining colony of Ancient Murrelets (Synthliboramphus antiquus) at East Limestone Island, British Columbia. During 1990-2010, Ancient Murrelet chicks were trapped at East Limestone Island while departing to sea, using a standard trapping method carried on throughout the departure period. Adult murrelets were trapped while departing from the colony during 1990-2003. Numbers of chicks trapped declined during 1990-1995, probably because of raccoon predation, increased slightly from 1995-2000 and subsequently declined again. Reproductive success was 30% lower during 2000-2003 than in earlier years, mainly because of an increase in desertions. The proportion of nonbreeders among adult birds trapped at night also declined over the study period. Mortality of adult birds, thought to be mainly prebreeders, from predators more than doubled over the same period. Apparent adult survival of breeders remained constant during 1991-2002 once the first year after banding was excluded, but the apparent survival rates in the first year after banding fell and the survival of birds banded as chicks to age three halved over the same period. A matrix model of population dynamics suggested that even during the early part of the study immigration from other breeding areas must have been substantial, supporting earlier observations that natal philopatry in this species is low. The general colony decline after 2000 probably was related to diminished recruitment, as evidenced by the lower proportion of nonbreeders in the trapped sample. Hence the trend is determined by the recruitment decisions of externally reared birds, rather than demographic factors operating on the local breeding population, an unusual situation for a colonial marine bird. Because of the contraction in the colony it may now be subject to a level of predation pressure from which recovery will be impossible without some form of intervention.
Resumo:
Cu,Zn-superoxide dismutase (SOD) is known to be a locus of mutation in familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express a mutant Cu,Zn-SOD, Gly-93--> Ala (G93A), have been shown to develop amyotrophic lateral sclerosis (ALS) symptoms. We cloned the FALS mutant, G93A, and wild-type cDNA of human Cu,Zn-SOD, overexpressed them in Sf9 insect cells, purified the proteins, and studied their enzymic activities for catalyzing the dismutation of superoxide anions and the generation of free radicals with H2O2 as substrate. Our results showed that both enzymes contain one copper ion per subunit and have identical dismutation activity. However, the free radical-generating function of the G93A mutant, as measured by the spin trapping method, is enhanced relative to that of the wild-type enzyme, particularly at lower H2O2 concentrations. This is due to a small, but reproducible, decrease in the value of Km for H2O2 for the G93A mutant, while the kcat is identical for both enzymes. Thus, the ALS symptoms observed in G93A transgenic mice are not caused by the reduction of Cu,Zn-SOD activity with the mutant enzyme; rather, it is induced by a gain-of-function, an enhancement of the free radical-generating function. This is consistent with the x-ray crystallographic studies showing the active channel of the FALS mutant is slightly larger than that of the wild-type enzyme; thus, it is more accessible to H2O2. This gain-of-function, in part, may provide an explanation for the association between ALS and Cu,Zn-SOD mutants.
Resumo:
A rapid and efficient method to identify the weak points of the complex chemical structure of low band gap (LBG) polymers, designed for efficient solar cells, when submitted to light exposure is reported. This tool combines Electron Paramagnetic Resonance (EPR) using the 'spin trapping method' coupled with density functional theory modelling (DFT). First, the nature of the short life-time radicals formed during the early-stages of photo-degradation processes are determined by a spin-trapping technique. Two kinds of short life-time radical (R and R′O) are formed after 'short-duration' illumination in an inert atmosphere and in ambient air, respectively. Second, simulation allows the identification of the chemical structures of these radicals revealing the most probable photochemical process, namely homolytical scission between the Si atom of the conjugated skeleton and its pendent side-chains. Finally, DFT calculations confirm the homolytical cleavage observed by EPR, as well as the presence of a group that is highly susceptible to photooxidative attack. Therefore, the synergetic coupling of a spin trapping method with DFT calculations is shown to be a rapid and efficient method for providing unprecedented information on photochemical mechanisms. This approach will allow the design of LBG polymers without the need to trial the material within actual solar cell devices, an often long and costly screening procedure.
Resumo:
"Interagency agreement no. 78-D-XO449."
Resumo:
A recent advance in biosecurity surveillance design aims to benefit island conservation through early and improved detection of incursions by non-indigenous species. The novel aspects of the design are that it achieves a specified power of detection in a cost-managed system, while acknowledging heterogeneity of risk in the study area and stratifying the area to target surveillance deployment. The design also utilises a variety of surveillance system components, such as formal scientific surveys, trapping methods, and incidental sightings by non-biologist observers. These advances in design were applied to black rats (Rattus rattus) representing the group of invasive rats including R. norvegicus, and R. exulans, which are potential threats to Barrow Island, Australia, a high value conservation nature reserve where a proposed liquefied natural gas development is a potential source of incursions. Rats are important to consider as they are prevalent invaders worldwide, difficult to detect early when present in low numbers, and able to spread and establish relatively quickly after arrival. The ‘exemplar’ design for the black rat is then applied in a manner that enables the detection of a range of non-indigenous species of rat that could potentially be introduced. Many of the design decisions were based on expert opinion as data gaps exist in empirical data. The surveillance system was able to take into account factors such as collateral effects on native species, the availability of limited resources on an offshore island, financial costs, demands on expertise and other logistical constraints. We demonstrate the flexibility and robustness of the surveillance system and discuss how it could be updated as empirical data are collected to supplement expert opinion and provide a basis for adaptive management. Overall, the surveillance system promotes an efficient use of resources while providing defined power to detect early rat incursions, translating to reduced environmental, resourcing and financial costs.
Resumo:
Large numbers of Sagmariasus verreauxi are trapped and hand collected in Australia, but discarded due to size and quota restrictions, and under the unevaluated assumption of few impacts. To test the validity of enforced discarding, trapped and hand-collected S. verreauxi (49-143. mm carapace length - CL) were examined for external damage, placed into cages, transferred to aquaria and monitored (with controls) over three months. Haemolymph was non-repetitively sampled immediately and at one, three, and seven days to quantify stress. Most trapped (64%) and hand-collected (79%) specimens were undersized (<104. mm CL), with the latter method yielding broader ranges of sizes and moult stages. Within-trap Octopus tetricus predation caused the only mortalities (3.3%). Hand collection resulted in much greater antennae and pereopod loss than trapping (53 vs. 4%) but, compared to controls, both methods evoked benign physiological responses that resolved within a week. While most wounded S. verreauxi regenerated all or some missing appendages post-moult, their mean CLs were less than those from intact conspecifics. Simple strategies, including larger mesh sizes, and/or installing modifications to reduce bycatch in traps, careful hand collection, and appropriate release techniques might minimise impacts (including predation) to unwanted S. verreauxi, and help to control stock exploitation. © 2012 Elsevier B.V.
Resumo:
Individual carbon nanotubes being substantially smaller than the wavelength of light, are not much responsive to optical manipulation. Here we demonstrate how decorating single-walled carbon nanotubes with palladium particles makes optical trapping and manipulation easier. Palladium decorated nanotubes (Pd/SWNTs) have higher effective dielectric constant and are trapped at much lower laser power level with greater ease. In addition, we report the transportation of Pd/SWNTs using an asymmetric line trap. Using this method carbon nanotubes can be transported in any desired direction with high transportation speed. (c) 2006 Optical Society of America.
Resumo:
Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A modified T-matrix method is presented to compute the scattered fields of various realistically shaped particles; then the radiation forces on the particles can be calculated via the Maxwell stress tenser integral. Numerical results of transverse trapping efficiencies of a focused Gaussian beam on ellipsoidal and spherical particles with the same volume are compared, which show that the shape and orientation of particles affect the maximal transverse trapping force and the displacement corresponding to the maximum. The effect of the polarization direction of the incident beam on the transverse trapping forces is also revealed. (c) 2007 Optical Society of America.