981 resultados para transmission spectrum
Resumo:
We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.
Resumo:
A new double-layer grating template is designed to reduce the out-of-band loss as much as 1.8dB when the loss of LP03 reaches 10.2 dB. Meanwhile, we propose a method to remove the sidelobes in the transmission spectra by the adjustment of the thickness of pressure plates. The plate-thickness-induced shift of resonant wavelength and the attenuation of loss peak intensity when removing sidelobes can be modified by the fibre distance and contact point on the pressure plates.
Resumo:
It is demonstrated with powerful evidence that the extraordinary transmission of a metallic grating is undoubtedly due to the excitation of standing surface plasma waves in the Fabry-Perot like resonator. This is the first time that the strong standing waves set up in the groove of a sub-wavelength double-layer grating (SWDG) for the surface plasma waves have been reported. Moreover, about 90% transmission is gained with an SWDG, more easily fabricated than ordinary metallic gratings, in the first peak of transmission spectrum.
Resumo:
A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.
Resumo:
A system comprised of a Martin-Puplett type polarizing interferometer and a Helium-3 cryostat was developed to study the transmission of materials in the very-far-infrared region of the spectrum. This region is of significant interest due to the low-energy excitations which many materials exhibit. The experimental transmission spectrum contains information concerning the optical properties of the material. The set-up of this system is described in detail along with the adaptations and improvements which have been made to the system to ensure the best results. Transmission experiments carried out with this new set-up for two different varieties of materials: superconducting thin films of lead and biological proteins, are discussed. Several thin films of lead deposited on fused silica quartz substrates were studied. From the ratio of the transmission in the superconducting state to that in the normal state the superconducting energy gap was determined to be approximately 25 cm-1 which corresponds to 2~/kBTc rv 5 in agreement with literature data. Furthermore, in agreement with theoretical predictions, the maximum in the transmission ratio was observed to increase as the film thickness was increased. These results provide verification of the system's ability to accurately measure the optical properties of thin low-Tc superconducting films. Transmission measurements were carried out on double deionized water, and a variety of different concentrations by weight of the globular protein, Bovine Serum Albumin, in the sol, gel and crystalline forms. The results of the water study agree well with literature values and thus further illustrate the reproducibility of the system. The results of the protein experiments, although preliminary, indicate that as the concentration increases the samples become more transparent. Some weak structure in the frequency dependent absorption coefficient, which is more prominent in crystalline samples, may be due to low frequency vibrations of the protein molecules.
Resumo:
The potential of clear Ga2S3-GeS2-CsCl based sulfide glasses transparent up to 11.5 μm to be used as new optical material for multispectral applications has been investigated. The addition of large amount of chlorine ions – above 40 mol.% of CsCl – into the chalcogenide vitreous network in order to produce colorless glasses results in a drastic increase of their water contamination. We report for the first time, to the best of our knowledge, the purification of cesium chloride CsCl by dynamic distillations under vacuum in order to reduce water and hydroxyl group contamination before complete melting of the glass. Besides, sulfur purification by dynamic and static distillations was also performed in the implemented method. The obtained glasses were then characterized by UV-visible and infrared (FTIR) spectroscopies, by electron probe microanalysis (EPMA), thermal analysis (DSC), and their refractive indices in the visible and near infrared ranges were also measured. A large improvement of the glass transmission spectrum has been achieved with an estimated reduction of about 45 times of the OH and H2O content and 60 times of the SH content. The glass thermal molding ability and chemical durability with and without protective coating have been tested to probe their potential for fabrication of complex optics.
Resumo:
We present high resolution transmission spectra of giant planet atmospheres from a coupled 3-D atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9 to 55 day orbital periods around solar-type stars. The results of our 3-D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple 1-D models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blue shifts of up to 3 km s−1, whereas less irradiated planets show almost no net Doppler shifts. Compared to 1-D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3-D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1-D atmospheric models may be inadequate, as 3-D atmospheric motions can produce a noticeable effect on the absorption signatures.
Resumo:
We present transmission spectroscopy of the warm Saturn-mass exoplanet WASP-39b made with the Very Large Telescope (VLT) FOcal Reducer and Spectrograph (FORS2) across the wavelength range 411-810nm. The transit depth is measured with a typical precision of 240 parts per million (ppm) in wavelength bins of 10nm on a V = 12.1 magnitude star. We detect the sodium absorption feature (3.2-sigma) and find evidence for potassium. The ground-based transmission spectrum is consistent with Hubble Space Telescope (HST) optical spectroscopy, strengthening the interpretation of WASP-39b having a largely clear atmosphere. Our results demonstrate the great potential of the recently upgraded FORS2 spectrograph for optical transmission spectroscopy, obtaining HST-quality light curves from the ground.
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Bilayer thin films of Te/As(2)S(3) were prepared from Te and As(2)S(3) by thermal technique under high vacuum. Optical constants were calculated by analysing the transmission spectrum in the spectral range 400-1100 nm. The optical band gap decreases with the addition of Te to As(2)S(3). The decrease of optical band gap has been explained on the basis of density of states and the increase in disorder in the system. We have irradiated the as-deposited films using a diode pumped solid state laser of 532 nm wavelength to study photo-diffusion of Te into As(2)S(3). The changes were characterised by Fourier Transform Infrared and X-ray Photoelectron Spectroscopy (XPS). The optical band gap is found to be decreased with the light irradiation which is proposed due to homopolar bond formation. The core level peaks in XPS spectra give information about different bond formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
利用带电单分散聚苯乙烯胶体粒子,通过自组装机理,制备了体积百分比为4·8%的具有多晶结构的胶体晶体,并用Kossel衍射技术和紫外可见分光光度计分别对晶体的生长过程进行了监测.通过对Kossel的图像分析检测不同阶段相应的晶格结构,发现胶体结晶过程晶体结构演变顺序为由液态—随机层结构—堆无序结构—面心立方孪晶结构到面心立方结构.定量地确定了结晶过程中晶体不同晶面的晶面间距和晶体的晶格常数,通过紫外可见分光光度计测量的晶体透射谱图,计算得到111晶面的晶面间距和晶体的晶格常数,与用Kossel衍射技术得到的结果相一致,还发现随样品放置时间的延长,衰减峰变窄和加深,并向短波方向移动,对应着晶体的晶格常数减小的现象.
Resumo:
A planar waveguide ring resonator was fabricated by organic-inorganic hybrid sol-gel materials; its sensitivity to ethanol vapor was experimentally investigated. It was found that dips in the transmission spectrum of the device shifted to longer wavelengths with increasing the ethanol concentration, and its sensitivity showed a linear relation with the ethanol concentration, showing a coefficient of 1.13 pm/ppm. In addition, the transmission loss of the ring resonator decreased with increasing the ethanol concentration. The measured characteristics suggest that the device may be considered as one of the candidates of alcohol vapor sensors. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.