977 resultados para transmission blocking vaccines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pfs230, surface protein of gametocyte/gamete of the human malaria parasite, Plasmodium falciparum, is a prime candidate of malaria transmission-blocking vaccine. Plasmodium vivax has an ortholog of Pfs230 (Pvs230), however, there has been no study in any aspects on Pvs230 to date. To investigate whether Pvs230 can be a vivax malaria transmission-blocking vaccine, we performed evolutionary and population genetic analysis of the Pvs230 gene (pvs230: PVX_003905). Our analysis of Pvs230 and its orthologs in eight Plasmodium species revealed two distinctive parts: an interspecies variable part (IVP) containing species-specific oligopeptide repeats at the N-terminus and a 7.5 kb interspecies conserved part (ICP) containing 14 cysteine-rich domains. Pvs230 was closely related to its orthologs, Pks230 and Pcys230, in monkey malaria parasites. Analysis of 113 pvs230 sequences obtained from worldwide, showed that nucleotide diversity is remarkably low in the non-repeat 8-kb region of pvs230 (theta pi = 0.00118) with 77 polymorphic nucleotide sites, 40 of which results in amino acid replacements. A signature of purifying selection but not of balancing selection was seen on pvs230. Functional and/or structural constraints may limit the level of polymorphism in pvs230. The observed limited polymorphism in pvs230 should ground for utilization of Pvs230 as an effective transmission-blocking vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmune (R) vaccine is the first licensed vaccine against canine visceral leishmaniasis. It contains the Fucose-Mannose-ligand (FML) antigen of Leishmania donovani. The potential Leishmune (R) vaccine effect on the interruption of the transmission of the disease, was assayed by monitoring, in untreated (n = 40) and vaccinated dogs (n = 32) of a Brazilian epidemic area: the kala-azar clinical signs, the FML-seropositivity and the Leishmania parasite evidence by immunohistochemistry of skin and PCR for Leishmanial DNA of lymph node and blood samples. on month I I after vaccination, untreated controls showed: 25% of symptomatic cases, 50% of FML-seropositivity, 56.7% of lymph node PCR, 15.7% of blood PCR and 25% of immunohistochemical positive reactions. The Leishmune (R)-vaccinated dogs showed 100% of seropositivity to FML and a complete absence of clinical signs and of parasites (0%) in skin, lymph node and blood PCR samples (P < 0.01). The positivity in FML-ELISA in untreated dogs significantly correlates with the PCR in lymph node samples (p < 0.001) and with the increase in number of symptoms (p = 0.006) being strong markers of infectiousness. The absence of symptoms and of evidence of Leishmania DNA and parasites in Leishmune (R)-vaccinated animals indicates the non-infectious condition of the Leishmune (R)-vaccinated dogs. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Zoonotic schistosomiasis japonica is a major public health problem in China. Bovines, particularly water buffaloes, are thought to play a major role in the transmission of schistosomiasis to humans in China. Preliminary results (1998–2003) of a praziquantel (PZQ)-based pilot intervention study we undertook provided proof of principle that water buffaloes are major reservoir hosts for S. japonicum in the Poyang Lake region, Jiangxi Province. Methods and Findings Here we present the results of a cluster-randomised intervention trial (2004–2007) undertaken in Hunan and Jiangxi Provinces, with increased power and more general applicability to the lake and marshlands regions of southern China. The trial involved four matched pairs of villages with one village within each pair randomly selected as a control (human PZQ treatment only), leaving the other as the intervention (human and bovine PZQ treatment). A sentinel cohort of people to be monitored for new infections for the duration of the study was selected from each village. Results showed that combined human and bovine chemotherapy with PZQ had a greater effect on human incidence than human PZQ treatment alone. Conclusions The results from this study, supported by previous experimental evidence, confirms that bovines are the major reservoir host of human schistosomiasis in the lake and marshland regions of southern China, and reinforce the rationale for the development and deployment of a transmission blocking anti-S. japonicum vaccine targeting bovines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Generation of potent anti-HIV antibody responses in mucosal compartments is a potential requirement of a transmission-blocking HIV vaccine. HIV-specific, functional antibody responses are present in breast milk, and these mucosal antibody responses may play a role in protection of the majority of HIV-exposed, breastfeeding infants. Therefore, characterization of HIV-specific antibodies produced by B cells in milk could guide the development of vaccines that elicit protective mucosal antibody responses. METHODS: We isolated B cells from colostrum of an HIV-infected lactating woman with a detectable neutralization response in milk and recombinantly produced and characterized the resulting HIV-1 Envelope (Env)-specific monoclonal antibodies (mAbs). RESULTS: The identified HIV-1 Env-specific colostrum mAbs, CH07 and CH08, represent two of the first mucosally-derived anti-HIV antibodies yet to be reported. Colostrum mAb CH07 is a highly-autoreactive, weakly-neutralizing gp140-specific mAb that binds to linear epitopes in the gp120 C5 region and gp41 fusion domain. In contrast, colostrum mAb CH08 is a nonpolyreactive CD4-inducible (CD4i) gp120-specific mAb with moderate breadth of neutralization. CONCLUSIONS: These novel HIV-neutralizing mAbs isolated from a mucosal compartment provide insight into the ability of mucosal B cell populations to produce functional anti-HIV antibodies that may contribute to protection against virus acquisition at mucosal surfaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mosquito midgut plays a central role in the sporogonic development of malaria parasites. We have found that polyclonal sera, produced against mosquito midguts, blocked the passage of Plasmodium falciparum ookinetes across the midgut, leading to a significant reduction of infections in mosquitoes. Anti-midgut mAbs were produced that display broad-spectrum activity, blocking parasite development of both P. falciparum and Plasmodium vivax parasites in five different species of mosquitoes. In addition to their parasite transmission-blocking activity, these mAbs also reduced mosquito survivorship and fecundity. These results reveal that mosquito midgut-based antibodies have the potential to reduce malaria transmission in a synergistic manner by lowering both vector competence, through transmission-blocking effects on parasite development, and vector abundance, by decreasing mosquito survivorship and egg laying capacity. Because the intervention can block transmission of different malaria parasite species in various species of mosquitoes, vaccines against such midgut receptors may block malaria transmission worldwide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To further investigate the importance of insulin signaling in the growth, development, sexual maturation and egg production of adult schistosomes, we have focused attention on the insulin receptors (SjIRs) of Schistosoma japonicum, which we have previously cloned and partially characterised. We now show, by Biolayer Interferometry, that human insulin can bind the L1 subdomain (insulin binding domain) of recombinant (r)SjIR1 and rSjIR2 (designated SjLD1 and SjLD2) produced using the Drosophila S2 protein expression system. We have then used RNA interference (RNAi) to knock down the expression of the SjIRs in adult S. japonicum in vitro and show that, in addition to their reduced transcription, the transcript levels of other important downstream genes within the insulin pathway, associated with glucose metabolism and schistosome fecundity, were also impacted substantially. Further, a significant decrease in glucose uptake was observed in the SjIR-knockdown worms compared with luciferase controls. In vaccine/challenge experiments, we found that rSjLD1 and rSjLD2 depressed female growth, intestinal granuloma density and faecal egg production in S. japonicum in mice presented with a low dose challenge infection. These data re-emphasize the potential of the SjIRs as veterinary transmission blocking vaccine candidates against zoonotic schistosomiasis japonica in China and the Philippines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study evaluated the immunogenicity of new malaria vaccine formulations based on the 19 kDa C-terminal fragment of Plasmodium vivax Merozoite Surface Protein-1 (MSP1(19)) and the Salmonella enterica serovar Typhimurium flagellin (FIiC), a Toll-like receptor 5 (TLR5) agonist. FHC was used as an adjuvant either admixed or genetically linked to the P. vivax MSP1(19) and administered to C57BL/6 mice via parenteral (s.c.) or mucosal (i.n.) routes. The recombinant fusion protein preserved MSP1(19) epitopes recognized by Sera collected from P. vivax infected humans and TLR5 agonist activity. Mice parenterally immunized with recombinant P vivax MSPI 19 in the presence of FliC, either admixed or genetically linked, elicited strong and long-lasting MSP1 (19)-specific systemic antibody responses with a prevailing IgG1 subclass response. Incorporation of another TLR agonist, CpG ODN 1826, resulted in a more balanced response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response measured by interferon-gamma secretion. Finally, we show that MSPI 19-specific antibodies recognized the native protein expressed on the surface of P. vivax parasites harvested from infected humans. The present report proposes a new class of malaria vaccine formulation based on the use of malaria antigens and the innate immunity agonist FliC. it contains intrinsic adjuvant properties and enhanced ability to induce specific humoral and cellular immune responses when administered alone or in combination with other adjuvants. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In responding to future influenza pandemics and other infectious agents, plasmid DNA overcomes many of the limitations of conventional vaccine production approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Dengue viruses (DENV) are the causative agents of dengue, the world's most prevalent arthropod-borne disease with around 40% of the world's population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia's efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP), that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito's ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites. METHODOLOGY/PRINCIPAL FINDINGS: We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival. CONCLUSIONS/SIGNIFICANCE: The saliva-based traits reported here offer more disease-relevant measures of Wolbachia's effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection frequencies and DENV titers in mosquitoes, by which Wolbachia should operate to reduce DENV transmission in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many next-generation distributed applications, such as grid computing, require a single source to communicate with a group of destinations. Traditionally, such applications are implemented using multicast communication. A typical multicast session requires creating the shortest-path tree to a fixed number of destinations. The fundamental issue in multicasting data to a fixed set of destinations is receiver blocking. If one of the destinations is not reachable, the entire multicast request (say, grid task request) may fail. Manycasting is a generalized variation of multicasting that provides the freedom to choose the best subset of destinations from a larger set of candidate destinations. We propose an impairment-aware algorithm to provide manycasting service in the optical layer, specifically OBS. We compare the performance of our proposed manycasting algorithm with traditional multicasting and multicast with over provisioning. Our results show a significant improvement in the blocking probability by implementing optical-layer manycasting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.