950 resultados para transition metal dichalcogenides
Resumo:
Using first-principles calculations we show that the band gap of bilayer sheets of semiconducting transition-metal dichalcogenides (TMDs) can be reduced smoothly by applying vertical compressive pressure. These materials undergo a universal reversible semiconductor-to-metal (S-M) transition at a critical pressure. The S-M transition is attributed to lifting of the degeneracy of the bands at the Fermi level caused by interlayer interactions via charge transfer from the metal to the chalcogen. The S-M transition can be reproduced even after incorporating the band gap corrections using hybrid functionals and the GW method. The ability to tune the band gap of TMDs in a controlled fashion over a wide range of energy opens up the possibility for its usage in a range of applications.
Resumo:
We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (sigma) and large thermopower leading to a high power factor (S-2 sigma) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (v(g)). Consequently, lowering the lattice thermal conductivity (kappa(latt)) below 2 W/m K. Low kappa(latt) combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZT(max) of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application. (C) 2015 AIP Publishing LLC.
Resumo:
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T′′), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T′′ MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T′′ phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.
Resumo:
X-ra!. K-absorption spectra of niobium in niobium dichalcogenides. namely NbS, and NbSe, and their first-row transition-metal intercalates Mi P 3N bSz (M = Cr. Mn. Fe. Co. Ni) and Ml#,NbSe2 (M = Fe. CO). have been measured together with those in niobium metal. The spectra of these materials are \er? similar to one another. They reflect the transitions to the partially filled niobium d band with some p character. A bariety of x-ray absorption nearedge structures (XASES) associated with the K edges of intercalated atoms are also presented and discussed.
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.
Resumo:
Various types of layered double hydroxides, a type of clay, were synthesised. They were then electrochemically tested to determine whether the samples would be suitable to store energy as supercapacitors. A manganese aluminium layered double hydroxide was electrochemically tested for the first time and found to have a large capacitance.
Resumo:
A new water-soluble, salen [salen = bis(salicylidene) ethylenediamine]-based ligand, 3 was developed. Two of the metal complexes of this ligand, i.e., 3a, [Mn(III)] and 3b, [Ni(II)], in the presence of cooxidant magnesium monoperoxyphthalate (MMPP) cleaved plasmid DNA pTZ19R efficiently and rapidly at a concentration similar to 1 mu M. In contrast, under comparable conditions, other metal complexes 3c, [Cu(II)] or 3d, [Cr(III)] could not induce any significant DNA nicking. The findings with Ni(II) complex suggest that the DNA cleavage processes can be modulated by the disposition of charges around the ligand.
Resumo:
A new heterocycle, namely 2-(furyl)-3-(furfuralimino)-1,2-dihydroquinazolin-4(3H)-one (ffdq) was formed by the ondensation of 2-aminobenzoylhydrazide with furfural and characterized by physico-chemical, spectroscopic, and single crystal X-ray diffraction studies. A series of complexes of ffdq have been synthesized and characterized by physico-chemical, spectroscopic, and thermal studies. According to the i.r. and 1H-n.m.r. spectra ffdq behaves as a bidentate ligand coordinating through quinazoline oxygen and azomethine nitrogen. The FAB-mass spectrum of the Cd(II) complex indicates the monomeric nature of this complex. The X-band e.p.r. spectrum of the Cu(II) complex and thermal stabilities of the Co(II) and Ni(II) complexes are discussed.
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
The catalytic effects of Fe2O3, Ni2O3, MnO2, and Co2O3 transition metal oxides (TMO) on the combustion of polystyrene and carboxyl-terminated polybutadiene were investigated. The order of activity of TMO's was explained by the presence of Co and absence of Fe and Ni in their lattice systems along with a reduced electron-transfer process; in systems which induce the metal ions to enter the lattice, the electron transfer process is much greater. The thermal decomposition of ammonium perchlorate propellants was enhanced to a greater extent by Co2O3 and MnO2 than by Fe2O3 and Ni2O3.
Resumo:
XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.