182 resultados para transglutaminase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of tyrosinase, laccase and transglutaminase (TG) were studied in different meat protein systems. The study was focused on the effects of the enzymes on the gel formation properties of myofibrils, and on the textural and water-holding properties of the heated meat systems. The cross-linking efficiency of a novel Trichoderma reesei tyrosinase was compared to that of the commercial Agaricus bisporus tyrosinase. Trichoderma tyrosinase was found to be superior compared to the Agaricus enzyme in its protein cross-linking efficiency and in the incorporation of a small molecule into a complex proteinaceous substrate. Tyrosinase, laccase and TG all polymerised myofibrillar proteins, but laccase was also found to cause protein fragmentation. A positive connection between covalent cross-link and gel formation was observed with tyrosinase and TG. Laccase was able to increase the gel formation only slightly. With an excessive laccase dosage the gel formation declined due to protein fragmentation. Tyrosinase, laccase and TG had different effects on the texture and water-holding of the heated chicken breast meat homogenates. Tyrosinase improved the firmness of the homogenate gels free of phosphate and with a low amount of meat. TG improved the firmness of all studied homogenates. Laccase weakened the gel firmness of the low-meat, low-salt and low-salt/phosphate homogenates and maintained the firmness on the control level in the homogenate free of phosphate. Tyrosinase was the only enzyme capable of reducing the weight loss in the homogenates containing a low amount of meat and a low amount of NaCl. TG was the only enzyme that could positively affect the firmness of the homogenate gel containing both low NaCl and phosphate amounts. In pilot scale the test products were made of coarsely ground chicken breast fillet with a moderate amount of salt. Increasining the amount of meat, salt and TG contents favoured the development of firmness of the test products. The evaporation loss decreased slightly along with increasing TG and NaCl amounts in the experimental conditions used, indicating a positive interaction between these two factors. In this work it was shown that tyrosinase, laccase and TG affected the same myofibrillar proteins, i.e. myosin and troponin T. However, these enzymes had distinguishable effects on the gel formation of a myofibril system as well as on the textural and water-holding properties of the finely ground meat homogenates, reflecting distinctions at least in the reaction mechanisms and target amino acid availability in the protein substrates for these enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure-function implication on a novel homozygous Trp250/Gly mutation of transglutaminase-1 (TGM1) observed in a patient of autosomal recessive congenital ichthyosis is invoked from a bioinformatics analysis. Structural consequences of this mutation are hypothesized in comparison to homologous enzyme human factor XIIIA accepted as valid in similar structural analysis and are projected as guidelines for future studies at an experimental level on TGM1 thus mutated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanisms of enzymes is crucial for our understanding of their role in biology and for designing methods to perturb or harness their activities for medical treatments, industrial processes, or biological engineering. One aspect of enzymes that makes them difficult to fully understand is that they are in constant motion, and these motions and the conformations adopted throughout these transitions often play a role in their function.

Traditionally, it has been difficult to isolate a protein in a particular conformation to determine what role each form plays in the reaction or biology of that enzyme. A new technology, computational protein design, makes the isolation of various conformations possible, and therefore is an extremely powerful tool in enabling a fuller understanding of the role a protein conformation plays in various biological processes.

One such protein that undergoes large structural shifts during different activities is human type II transglutaminase (TG2). TG2 is an enzyme that exists in two dramatically different conformational states: (1) an open, extended form, which is adopted upon the binding of calcium, and (2) a closed, compact form, which is adopted upon the binding of GTP or GDP. TG2 possess two separate active sites, each with a radically different activity. This open, calcium-bound form of TG2 is believed to act as a transglutaminse, where it catalyzes the formation of an isopeptide bond between the sidechain of a peptide-bound glutamine and a primary amine. The closed, GTP-bound conformation is believed to act as a GTPase. TG2 is also implicated in a variety of biological and pathological processes.

To better understand the effects of TG2’s conformations on its activities and pathological processes, we set out to design variants of TG2 isolated in either the closed or open conformations. We were able to design open-locked and closed-biased TG2 variants, and use these designs to unseat the current understanding of the activities and their concurrent conformations of TG2 and explore each conformation’s role in celiac disease models. This work also enabled us to help explain older confusing results in regards to this enzyme and its activities. The new model for TG2 activity has immense implications for our understanding of its functional capabilities in various environments, and for our ability to understand which conformations need to be inhibited in the design of new drugs for diseases in which TG2’s activities are believed to elicit pathological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the low temperature setting of fish paste, myosin heavy chain (MHC) is polymerized to cross-linked myosin heavy chain (CMHC), which is considered to occur by the action of endogenous transglutaminase (TGase). In this study the contribution of TGase on the setting of Alaska pollack surimi at different temperatures was studied. Alaska pollack surimi was ground with 3% NaCl, 30% h2o and with or without ethylene glycol bis (β-aminoethylether) N, N, N¹,N¹- tetra acetic acid (EGTA), an inhibitor of TGase. Among the pastes without EGTA, highest TGase activity was observed at 25°C but breaking force of the gel set at 25°C was lower than that set at 30°, 35°, and 40°C. Addition of EGTA (5m mol/kg) to the paste suppressed TGase activity at all setting temperatures from 20° to 40°C. Gelation of the pastes and cross-linking of MHC on addition of EGTA were suppressed completely at 20° and 25°C, partially at 30° and 35°C, and not at all at 40°C. The findings suggested that during the setting of Alaska pollack surimi TGase mediated cross-linking of MHC was strong at around 25°C but the thermal aggregation of MHC by non-covalent bonds was strong at above 35°C. Setting of surimi at 40°C and cross-linking of its MHC did not involve TGase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Tissue transglutaminase (t-TG) is the main autoantigen recognized by the endomysium antibodies (EMA) observed in patients with celiac disease (CD). The aim of the study was to assess an ELISA method for t-TG antibodies (t-TGA) with respect to EMA IF assay in pediatric and adult patients. METHODS: t-TGA were analyzed by ELISA in 220 sera samples: 82 patients with biopsy-proven untreated CD (23 adults and 59 children), 14 CD children on gluten-free diet, 18 asymptomatic relatives of CD patients, and 106 age-matched control patients with gluten-unrelated gastrointestinal diseases (58 adults and 48 children). Serum IgA EMA were tested on umbilical cord sections in all patients. RESULTS: The great majority (92.7%) of untreated CD patients (both adults and children) were t-TGA positive (values ranging from 20.1 to > 300 AU). None of the child control patients and only two out of 58 (3.4%) of the adults with unrelated gastrointestinal diseases had serum t-TGA positivity; two out of 18 first-degree relatives with biopsy-proved silent CD were t-TGA (as well as EMA) positive. Finally, two out of 14 CD children, assuming a gluten-free diet, had serum t-TGA (as well as EMA). A highly significant correlation (P < 0.001) was observed between t-TGA concentrations and EMA. t-TGA showed a sensitivity of 87% and 95%, a specificity of 97% and 100% for adults and children, respectively. CONCLUSION: The method is highly sensitive and specific in the diagnosis of CD and is promising as a tool for routine diagnostic use and population screening, especially in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the value of serum antitissue transglutaminase IgA antibodies (IgA-TTG) and IgA antiendomysial antibodies (IgA-EMA) in the diagnosis of coeliac disease in cohorts from different geographical areas in Europe. The setting allowed a further comparison between the antibody results and the conventional small-intestinal histology. METHODS: A total of 144 cases with coeliac disease [median age 19.5 years (range 0.9-81.4)], and 127 disease controls [median age 29.2 years (range 0.5-79.0)], were recruited, on the basis of biopsy, from 13 centres in nine countries. All biopsy specimens were re-evaluated and classified blindly a second time by two investigators. IgA-TTG were determined by ELISA with human recombinant antigen and IgA-EMA by an immunofluorescence test with human umbilical cord as antigen. RESULTS: The quality of the biopsy specimens was not acceptable in 29 (10.7%) of 271 cases and a reliable judgement could not be made, mainly due to poor orientation of the samples. The primary clinical diagnosis and the second classification of the biopsy specimens were divergent in nine cases, and one patient was initially enrolled in the wrong group. Thus, 126 coeliac patients and 106 controls, verified by biopsy, remained for final analysis. The sensitivity of IgA-TTG was 94% and IgA-EMA 89%, the specificity was 99% and 98%, respectively. CONCLUSIONS: Serum IgA-TTG measurement is effective and at least as good as IgA-EMA in the identification of coeliac disease. Due to a high percentage of poor histological specimens, the diagnosis of coeliac disease should not depend only on biopsy, but in addition the clinical picture and serology should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Celiac disease is a gluten-induced autoimmune enteropathy characterized by the presence of tissue tranglutaminase (tTG) autoantibodies. A disposable electrochemical immunosensor (EI) for the detection of IgA and IgG type anti-tTG autoantibodies in real patient’s samples is presented. Screen-printed carbon electrodes (SPCE) nanostructurized with carbon nanotubes and gold nanoparticles were used as the transducer surface. This transducer exhibits the excellent characteristics of carbon–metal nanoparticle hybrid conjugation and led to the amplification of the immunological interaction. The immunosensing strategy consisted of the immobilization of tTG on the nanostructured electrode surface followed by the electrochemical detection of the autoantibodies present in the samples using an alkaline phosphatase (AP) labelled anti-human IgA or IgG antibody. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with a commercial ELISA kit indicating that the electrochemical immunosensor is a trustful analytical screening tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La transglutaminase microbienne (Microbial transglutaminase : MTG) est fortement exploitée dans l’industrie textile et alimentaire afin de modifier l’apparence et la texture de divers produits. Elle catalyse la formation de liaisons iso-peptidiques entre des protéines par l’entremise d’une réaction de transfert d’acyle entre le groupement γ-carboxamide d’une glutamine provenant d’un substrat donneur d’acyle, et le groupement ε-amino d’une lysine provenant d’un substrat accepteur d’acyle. La MTG est tolérante à un large éventail de conditions réactionnelles, ce qui rend propice le développement de cette enzyme en tant que biocatalyseur. Ayant pour but le développement de la MTG en tant qu’alternative plus soutenable à la synthèse d’amides, nous avons étudié la réactivité d’une gamme de substrats donneurs et accepteurs non-naturels. Des composés chimiquement diversifiés, de faible masse moléculaire, ont été testés en tant que substrats accepteurs alternatifs. Il fut démontré que la MTG accepte une large gamme de composés à cet effet. Nous avons démontré, pour la première fois, que des acides aminés non-ramifiés et courts, tels la glycine, peuvent servir de substrat accepteur. Les α-acides aminés estérifiés Thr, Ser, Cys et Trp, mais pas Ile, sont également réactifs. En étendant la recherche à des composés non-naturels, il fut observé qu’un cycle aromatique est bénéfique pour la réactivité, bien que les substituants réduisent l’activité. Fait notable, des amines de faible masse moléculaire, portant les groupements de forte densité électronique azidure ou alcyne, sont très réactives. La MTG catalyse donc efficacement la modification de peptides qui pourront ensuite être modifiés ou marqués par la chimie ‘click’. Ainsi, la MTG accepte une variété de substrats accepteurs naturels et non-naturels, élargissant la portée de modification des peptides contenant la glutamine. Afin de sonder le potentiel biocatalytique de la MTG par rapport aux substrats donneurs, des analogues plus petits du peptide modèle Z-Gln-Gly furent testés; aucun n’a réagi. Nous avons toutefois démontré, pour la première fois, la faible réactivité d’esters en tant que substrats donneurs de la MTG. L’éventuelle amélioration de cette réactivité permettrait de faire de la MTG un biocatalyseur plus général pour la synthèse d’amides. Mots clés: Lien amide, biocatalyse, biotransformation, transglutaminase, arrimage moléculaire, criblage de substrats, ingénierie de substrats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La transglutaminase tissulaire est une enzyme dépendante du calcium qui catalyse la formation de liens isopeptidiques, entre les chaînes latérales de résidus glutamine et lysine, permettant, par le fait même, la réticulation des protéines dans les systèmes biologiques. Elle joue un rôle, entre autres, dans l’endocytose, la régulation du développement des cellules, et même dans l’apoptose. Néanmoins, une dérégulation de l’activité biologique de cette enzyme peut entrainer différentes pathologies, comme la formation de cataractes, de plaques amyloïdes dans la maladie d’Alzheimer, ou encore peut mener au développement de la maladie céliaque. C’est pourquoi une meilleure connaissance du mécanisme d’action de cette enzyme et la possibilité de réguler son action à l’aide de substrats ou d’inhibiteurs sont nécessaires. Dans cette optique, une méthode d’expression et de purification de la transglutaminase humaine a été développée, permettant de travailler directement avec la cible pharmacologique désirée. De plus, une étude du mode d’inhibition et de liaison d’une classe d’inhibiteurs réversibles précédemment découverte dans le groupe, soit la famille des trans-cinnamoyles, a permis d’identifier que la puissance de ces molécules est influencée par la présence du calcium et qu’une inhibition dépendante du temps est observée, en lien avec un potentiel équilibre conformationnel lent de la transglutaminase. D’un autre côté, la susceptibilité à une attaque nucléophile par des thiols de cette classe de molécule rend leur potentiel pharmacologique grandement diminué, et c’est pourquoi une nouvelle famille de molécules a été identifiée, basée sur un squelette ynone, avec une valeur d’IC50 très prometteuse de 2,6 μM, en faisant un des meilleurs inhibiteurs réversibles de la transglutaminase développés à ce jour. Finalement, une stratégie de photomarquage jumelée à une analyse de spectrométrie de masse en tandem a été développée pour la découverte du site de liaison du substrat dérivé de la lysine, dans le but de mieux comprendre le mécanisme complexe de cette enzyme.