964 resultados para transcriptional regulatory networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linkage studies have identified the human leukocyte antigen (HLA)-DRB1 as a putative rheumatoid arthritis (RA) susceptibility locus (SL). Nevertheless, it was estimated that its contribution was partial, suggesting that other non-HLA genes may play a role in RA susceptibility. To test this hypothesis, we conducted microarray transcription profiling of peripheral blood mononuclear cells in 15 RA patients and analyzed the data, using bioinformatics programs (significance analysis of microarrays method and GeneNetwork), which allowed us to determine the differentially expressed genes and to reconstruct transcriptional networks. The patients were grouped according to disease features or treatment with tumor necrosis factor blocker. Transcriptional networks that were reconstructed allowed us to identify the interactions occurring between RA SL and other genes, for example, HLA-DRB1 interacting with FNDC3A (fibronectin type III domain containing 3A). Given that fibronectin fragments can stimulate mediators of matrix and cartilage destruction in RA, this interaction is of special interest and may contribute to a clearer understanding of the functional role of HLA-DRB1 in RA pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neisseria meningitidis, the leading cause of bacterial meningitis, can adapt to different host niches during human infection. Both transcriptional and post-transcriptional regulatory networks have been identified as playing a crucial role for bacterial stress responses and virulence. We investigated the N. meningitidis transcriptional landscape both by microarray and by RNA sequencing (RNAseq). Microarray analysis of N. meningitidis grown in the presence or absence of glucose allowed us to identify genes regulated by carbon source availability. In particular, we identified a glucose-responsive hexR-like transcriptional regulator in N. meningitidis. Deletion analysis showed that the hexR gene is accountable for a subset of the glucose-responsive regulation, and in vitro assays with the purified protein showed that HexR binds to the promoters of the central metabolic operons of meningococcus, by targeting a DNA region overlapping putative regulatory sequences. Our results indicate that HexR coordinates the central metabolism of meningococcus in response to the availability of glucose, and N. meningitidis strains lacking the hexR gene are also deficient in establishing successful bacteremia in a mouse model of infection. In parallel, RNAseq analysis of N. meningitidis cultured under standard or iron-limiting in vitro growth conditions allowed us to identify novel small non-coding RNAs (sRNAs) potentially involved in N. meningitidis regulatory networks. Manual curation of the RNAseq data generated a list of 51 sRNAs, 8 of which were validated by Northern blotting. Deletion of selected sRNAs caused attenuation of N. meningitidis infection in a murine model, leading to the identification of the first sRNAs influencing meningococcal bacteraemia. Furthermore, we describe the identification and initial characterization of a novel sRNA unique to meningococcus, closely associated to genes relevant for the intracellular survival of pathogenic Neisseriae. Taken together, our findings could help unravel the regulation of N. meningitidis adaptation to the host environment and its implications for pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biology is turning into an information science. The science of systems biology seeks to understand the genetic networks that govern organism development and functions. In this study the chicken was used as a model organism in the study of B cell regulatory factors. These studies open new avenues for plasma cell research by connecting the down regulation of the B cell gene expression program directly to the initiation of plasma cell differentiation. The unique advantages of the DT40 avian B cell model system, specifically its high homologous recombination rate, were utilized to study gene regulation in Pax5 knock out cell lines and to gain new insights into the B cell to plasma cell transitions that underlie the secretion of antibodies as part of the adaptive immune response. The Pax5 transcription factor is central to the commitment, development and maintenance of the B cell phenotype. Mice lacking the Pax5 gene have an arrest in development at the pro-B lymphocyte stage while DT40 cells have been derived from cells at a more mature stage of development. The DT40 Pax5-/- cells exhibited gene expression similarities with primary chicken plasma cells. The expression of the plasma cell transcription factors Blimp-1 and XBP-1 were significantly upregulated while the expression of the germinal centre factor BCL6 was diminished in Pax5-/- cells, and this alteration was normalized by Pax5 re-introduction. The Pax5-deficient cells further manifested substantially elevated secretion of IgM into the supernatant, another characteristic of plasma cells. These results for the first time indicated that the downregulation of the Pax5 gene in B cells promotes plasma cell differentiation. Cross-species meta-analysis of chicken and mouse Pax5 gene knockout studies uncovers genes and pathways whose regulatory relationship to Pax5 has remained unchanged for over 300 million years. Restriction of the hematopoietic stem cell fate to produce T, B and NK cell lineages is dependent on the Ikaros and its molecular partners, the closely related Helios and Aiolos. Ikaros family members are zinc finger proteins which act as transcriptional repressors while helping to activate lymphoid genes. Helios in mice is expressed from the hematopoietic stem cell level onwards, although later in development its expression seems to predominate in the T cell lineage. This study establishes the emergence and sequence of the chicken Ikaros family members. Helios expression in the bursa of Fabricius, germinal centres and B cell lines suggested a role for Helios in the avian B-cell lineage, too. Phylogenetic studies of the Ikaros family connect the expansion of the Ikaros family, and thus possibly the emergence of the adaptive immune system, with the second round of genome duplications originally proposed by Ohno. Paralogs that have arisen as a result of genome-wide duplications are sometimes termed ohnologs – Ikaros family proteins appear to fit that definition. This study highlighted the opportunities afforded by the genome sequencing efforts and somatic cell reverse genetics approaches using the DT40 cell line. The DT40 cell line and the avian model system promise to remain a fruitful model for mechanistic insight in the post-genomic era as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are several studies in the literature depicting measurement error in gene expression data and also, several others about regulatory network models. However, only a little fraction describes a combination of measurement error in mathematical regulatory networks and shows how to identify these networks under different rates of noise. Results: This article investigates the effects of measurement error on the estimation of the parameters in regulatory networks. Simulation studies indicate that, in both time series (dependent) and non-time series (independent) data, the measurement error strongly affects the estimated parameters of the regulatory network models, biasing them as predicted by the theory. Moreover, when testing the parameters of the regulatory network models, p-values computed by ignoring the measurement error are not reliable, since the rate of false positives are not controlled under the null hypothesis. In order to overcome these problems, we present an improved version of the Ordinary Least Square estimator in independent (regression models) and dependent (autoregressive models) data when the variables are subject to noises. Moreover, measurement error estimation procedures for microarrays are also described. Simulation results also show that both corrected methods perform better than the standard ones (i.e., ignoring measurement error). The proposed methodologies are illustrated using microarray data from lung cancer patients and mouse liver time series data. Conclusions: Measurement error dangerously affects the identification of regulatory network models, thus, they must be reduced or taken into account in order to avoid erroneous conclusions. This could be one of the reasons for high biological false positive rates identified in actual regulatory network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PhD Thesis in Bioengineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. RESULTS: We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. CONCLUSION: The simulation of regulatory networks aims at predicting the behavior of a whole system when subject to stimuli, such as drugs, or determine the role of specific components within the network. The predictions can then be used to interpret and/or drive laboratory experiments. SQUAD provides a user-friendly graphical interface, accessible to both computational and experimental biologists for the fast qualitative simulation of large regulatory networks for which kinetic data is not necessarily available.