917 resultados para traffic microsimulation
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sizedtrucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sized trucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
Several intelligent transportation systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions were tested: video in vehicle, audio in vehicle, and on-road flashing marker. The results from the driving simulator were inputs for a developed model that used traffic microsimulation (VISSIM 5.4) to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of changes in driver speed and compliance rate was greater at passive crossings than at active crossings. The slight difference in speed of drivers approaching ITS devices indicated that ITS helped drivers encounter crossings in a safer way. Since the traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varied depending on ITS safety devices, some modifications were made to the traffic simulation. The results showed that exposure to ITS devices at active crossings did not influence drivers’ behavior significantly according to the traffic performance indicator, such as delay time, number of stops, speed, and stopped delay. However, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.
Resumo:
Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.
Resumo:
The nature of the transport system contributes to public health outcomes in a range of ways. The clearest contribution to public health is in the area of traffic crashes, because of their direct impact on individual death and disability and their direct costs to the health system. Other papers in this conference address these issues. This paper outlines some collaborative research between the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) at QUT and Chinese researchers in areas that have indirect health impacts. Heavy vehicle dynamics: The integrity of the road surface influences crash risk, with ruts, pot-holes and other forms of road damage contributing to increased crash risks. The great majority of damage to the road surface from vehicles is caused by heavy trucks and buses, rather than cars or smaller vehicles. In some cases this damage is due to deliberate overloading, but in other cases it is due to vehicle suspension characteristics that lead to occasional high loads on particular wheels. Together with a visiting researcher and his colleagues, we have used both Queensland and Chinese data to model vehicle suspension systems that reduce the level of load, and hence the level of road damage and resulting crash risk(1-5). Toll worker exposure to vehicle emissions: The increasing construction of highways in China has also involved construction of a large number of toll roads. Tollbooth workers are potentially exposed to high levels of pollutants from vehicles, however the extent of this exposure and how it relates to standards for exposure are not well known. In a study led by a visiting researcher, we conducted a study to model these levels of exposure for a tollbooth in China(6). Noise pollution: The increasing presence of high speed roads in China has contributed to an increase in noise levels. In this collaborative study we modelled noise levels associated with a freeway widening near a university campus, and measures to reduce the noise(7). Along with these areas of research, there are many other areas of transport with health implications that are worthy of exploration. Traffic, noise and pollution contribute to a difficult environment for pedestrians, especially in an ageing society where there are health benefits to increasing physical activity. By building on collaborations such as those outlined, there is potential for a contribution to improved public health by addressing transport issues such as vehicle factors and pollution, and extending the research to other areas of travel activity. 1. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2014). Stiffness-damping matching method of an ECAS system based on LQG control. Journal of Central South University, 21:439-446. DOI: 10.1007/s1177101419579 2. Chen, Y., He, J., King, M., Feng, Z. and Chang, W. (2013). Comparison of two suspension control strategies for multi-axle heavy truck. Journal of Central South University, 20(2): 550-562. 3. Chen, Y., He, J., King, M., Chen, W. and Zhang, W. (2013). Effect of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions. Science China Technological Sciences, 56(3): 666-676. DOI: 10.1007/s11431-012-5091-3 4. Chen, Y., He., J., King, M., Chen, W. and Zhang, W. (2013). Model development and dynamic load-sharing analysis of longitudinal-connected air suspensions. Strojniški Vestnik - Journal of Mechanical Engineering, 59(1):14-24. 5. Chen, Y., He, J., King, M., Liu, H. and Zhang, W. (2013). Dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-1117. 6. He, J., Qi, Z., Hang, W., King, M., and Zhao, C. (2011). Numerical evaluation of pollutant dispersion at a toll plaza based on system dynamics and Computational Fluid Dynamics models. Transportation Research Part C, 19(2011):510-520. 7. Zhang, C., He, J., Wang, Z., Yin, R. and King, M. (2013). Assessment of traffic noise level before and after freeway widening using traffic microsimulation and a refined classic noise prediction method. Proceedings of Transportation Research Board Annual Conference, Washington DC, 13-17 January 2013, paper no. 13-2016.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.
Resumo:
Air pollution levels were monitored continuously over a period of 4 weeks at four sampling sites along a busy urban corridor in Brisbane. The selected sites were representative of industrial and residential types of urban environment affected by vehicular traffic emissions. The concentration levels of submicrometer particle number, PM2.5, PM10, CO, and NOx were measured 5-10 meters from the road. Meteorological parameters and traffic flow rates were also monitored. The data were analysed in terms of the relationship between monitored pollutants and existing ambient air quality standards. The results indicate that the concentration levels of all pollutants exceeded the ambient air background levels, in certain cases by up to an order of magnitude. While the 24-hr average concentration levels did not exceed the standard, estimates for the annual averages were close to, or even higher than the annual standard levels.
Resumo:
The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.