973 resultados para traffic flows
Resumo:
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed. Using the Chapman-Enskog expansion and multi-scale technique, we obtain the higher-order moments of equilibrium distribution function. A simple traffic light problem is simulated by using the present lattice Boltzmann model, and the result agrees well with analytical solution.
Resumo:
Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.
Resumo:
Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.
Resumo:
Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.
Resumo:
The paper addresses road freight transport operations during the London Olympic and Paralympic Games in 2012. It presents work carried out prior to the Games to understand pre-Games patterns of freight deliveries in London (for both light and heavy goods vehicles) and the results of modelling work carried out to assess the likely impacts of the Games road restrictions on freight operations. The modelling results indicated that increases in total hours travelled carrying out collection and delivery work would range from 1.4% to 11.4% in the six sectors considered. The results suggested increases in hours travelled in excess of 3.5% in four of the six sectors modelled. The possible actions that could be taken by organizations to reduce these negative impacts were also modelled and the results indicated that such actions would help to mitigate the impact of the road restrictions imposed on operators during the Games. The actual impacts of the 2012 Games on transport both in general terms and specifically in terms of freight transport are also discussed, together with the success of the actions taken by Transport for London (TfL) to help the road freight industry. The potential freight transport legacy of the London 2012 Games in terms of achieving more sustainable urban freight transport is considered and the steps being taken by TfL to help ensure that such a legacy can be realized are discussed. Such steps include policy-makers continuing to collaborate closely with the freight industry through the ‘London Freight Forum’, and TfL's efforts to encourage and support companies revising their delivery and collection times to the off-peak; improving freight planning in the design and management of TfL-funded road schemes; electronic provision of traffic information by TfL to the freight industry, and the further development of freight journey planning tools.
Resumo:
Short-term traffic flow data is characterized by rapid and dramatic fluctuations. It reflects the nature of the frequent congestion in the lane, which shows a strong nonlinear feature. Traffic state estimation based on the data gained by electronic sensors is critical for much intelligent traffic management and the traffic control. In this paper, a solution to freeway traffic estimation in Beijing is proposed using a particle filter, based on macroscopic traffic flow model, which estimates both traffic density and speed.Particle filter is a nonlinear prediction method, which has obvious advantages for traffic flows prediction. However, with the increase of sampling period, the volatility of the traffic state curve will be much dramatic. Therefore, the prediction accuracy will be affected and difficulty of forecasting is raised. In this paper, particle filter model is applied to estimate the short-term traffic flow. Numerical study is conducted based on the Beijing freeway data with the sampling period of 2 min. The relatively high accuracy of the results indicates the superiority of the proposed model.
Resumo:
This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.
Resumo:
Traffic classification using machine learning continues to be an active research area. The majority of work in this area uses off-the-shelf machine learning tools and treats them as black-box classifiers. This approach turns all the modelling complexity into a feature selection problem. In this paper, we build a problem-specific solution to the traffic classification problem by designing a custom probabilistic graphical model. Graphical models are a modular framework to design classifiers which incorporate domain-specific knowledge. More specifically, our solution introduces semi-supervised learning which means we learn from both labelled and unlabelled traffic flows. We show that our solution performs competitively compared to previous approaches while using less data and simpler features. Copyright © 2010 ACM.