977 resultados para topological insulator
Resumo:
We study the transport properties of the Dirac fermions with a Fermi velocity v(F) on the surface of a topological insulator across a ferromagnetic strip providing an exchange field J over a region of width d. We show that the conductance of such a junction, in the clean limit and at low temperature, changes from oscillatory to a monotonically decreasing function of d beyond a critical J. This leads to the possible realization of a magnetic switch using these junctions. We also study the conductance of these Dirac fermions across a potential barrier of width d and potential V-0 in the presence of such a ferromagnetic strip and show that beyond a critical J, the criteria of conductance maxima changes from chi = eV(0)d/(h) over barv(F) = n pi to chi = (n + 1/2)pi for integer n. We point out that these novel phenomena have no analogs in graphene and suggest experiments which can probe them.
Resumo:
We study the properties of Dirac fermions on the surface of a topological insulator in the presence of crossed electric and magnetic fields. We provide an exact solution to this problem and demonstrate that, in contrast to their counterparts in graphene, these Dirac fermions allow relative tuning of the orbital and Zeeman effects of an applied magnetic field by a crossed electric field along the surface. We also elaborate and extend our earlier results on normal-metal-magnetic film-normal metal (NMN) and normal-metal-barrier-magnetic film (NBM) junctions of topological insulators [S. Mondal, D. Sen, K. Sengupta, and R. Shankar, Phys. Rev. Lett. 104, 046403 (2010)]. For NMN junctions, we show that for Dirac fermions with Fermi velocity vF, the transport can be controlled using the exchange field J of a ferromagnetic film over a region of width d. The conductance of such a junction changes from oscillatory to a monotonically decreasing function of d beyond a critical J which leads to the possible realization of magnetic switches using these junctions. For NBM junctions with a potential barrier of width d and potential V-0, we find that beyond a critical J, the criteria of conductance maxima changes from chi=eV(0)d/h upsilon(F)=n pi to chi=(n+1/2)pi for integer n. Finally, we compute the subgap tunneling conductance of a normal-metal-magnetic film-superconductor junctions on the surface of a topological insulator and show that the position of the peaks of the zero-bias tunneling conductance can be tuned using the magnetization of the ferromagnetic film. We point out that these phenomena have no analogs in either conventional two-dimensional materials or Dirac electrons in graphene and suggest experiments to test our theory.
Resumo:
We provide a theory for the tunneling conductance G(V) of Dirac electrons on the surface of a topological insulator as measured by a spin-polarized scanning tunneling microscope tip for low-bias voltages V. We show that if the in-plane rotational symmetry on the surface of the topological insulator is broken by an external field that does not couple to spin directly (such as an in-plane electric field), G(V) exhibits an unconventional dependence on the direction of the magnetization of the tip, i.e., it acquires a dependence on the azimuthal angle of the magnetization of the tip. We also show that G(V) can be used to measure the magnitude of the local out-of-plane spin orientation of the Dirac electrons on the surface. We explain the role of the Dirac electrons in this unconventional behavior and suggest experiments to test our theory.
Resumo:
We address how the nature of linearly dispersing edge states of two-dimensional (2D) topological insulators evolves with increasing electron-electron correlation engendered by a Hubbard-like on-site repulsion U in finite ribbons of two models of topological band insulators. Using an inhomogeneous cluster slave-rotor mean-field method developed here, we show that electronic correlations drive the topologically nontrivial phase into a Mott insulating phase via two different routes. In a synchronous transition, the entire ribbon attains a Mott insulating state at one critical U that depends weakly on the width of the ribbon. In the second, asynchronous route, Mott localization first occurs on the edge layers at a smaller critical value of electronic interaction, which then propagates into the bulk as U is further increased until all layers of the ribbon become Mott localized. We show that the kind of Mott transition that takes place is determined by certain properties of the linearly dispersing edge states which characterize the topological resilience to Mott localization.
Resumo:
We study a junction of a topological insulator with a thin two-dimensional nonmagnetic or partially polarized ferromagnetic metallic film deposited on a three-dimensional insulator. We show, by deriving generic boundary conditions applicable to electrons traversing the junction, that there is a finite spin-current injection into the film whose magnitude can be controlled by tuning a voltage V applied across the junction. For ferromagnetic films, the direction of the component of the spin current along the film magnetization can also be tuned by tuning the barrier potential V-0 at the junction. We point out the role of the chiral spin-momentum locking of the Dirac electrons behind this phenomenon and suggest experiments to test our theory.
Resumo:
The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401
Resumo:
We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.
Resumo:
We use the bulk Hamiltonian for a three-dimensional topological insulator such as Bi-2 Se-3 to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Hamiltonians (which are derived from the bulk Hamiltonian) and numerical methods based on a lattice discretization of the bulk Hamiltonian. We find that the application of a potential barrier along an edge can give rise to states localized at that edge. These states have an unusual energy-momentum dispersion which can be controlled by applying a potential along the edge; in particular, the velocity of these states can be tuned to zero. The scattering and conductance across the edge is studied as a function of the edge potential. We show that a magnetic field in a particular direction can also give rise to zero energy states on certain edges. We point out possible experimental ways of looking for the various edge states.
Resumo:
We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.
Resumo:
We demonstrate theoretically that electric field can drive a quantum phase transition between band insulator to topological insulator in CdTe/HgCdTe/CdTe quantum wells. The numerical results suggest that the electric field could be used as a switch to turn on or off the topological insulator phase, and temperature can affect significantly the phase diagram for different gate voltage and compositions. Our theoretical results provide us an efficient way to manipulate the quantum phase of HgTe quantum wells.
Resumo:
We study electron tunneling through a planar magnetic and electric barrier on the surface of a three-dimensional topological insulator. For the double barrier structures, we find (i) a directional-dependent tunneling which is sensitive to the magnetic field configuration and the electric gate voltage, (ii) a spin rotation controlled by the magnetic field and the gate voltage, (iii) many Fabry-Perot resonances in the transmission determined by the distance between the two barriers, and (iv) the electrostatic potential can enhance the difference in the transmission between the two magnetization configurations, and consequently lead to a giant magnetoresistance. Points (i), (iii), and (iv) are alike with that in graphene stemming from the same linear-dispersion relations.
Resumo:
We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.
Resumo:
SmB6 has been predicted to be a Kondo topological insulator with topologically protected conducting surface states. We have studied quantitatively the electrical transport through surface states in high-quality single crystals of SmB6. We observe a large nonlocal surface signal at temperatures lower than the bulk Kondo gap scale. Measurements and finite-element simulations allow us to distinguish unambiguously between the contributions from different transport channels. In contrast to general expectations, the electrical transport properties of the surface channels were found to be insensitive to high magnetic fields. We propose possible scenarios that might explain this unexpected finding. Local and nonlocal magnetoresistance measurements allowed us to identify possible signatures of helical spin states and strong interband scattering at the surface.
Resumo:
We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
Resumo:
A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.