930 resultados para topological complexity
Resumo:
Date of Acceptance: 5/04/2015 15 pages, 4 figures
Resumo:
Leu-Enkephalin in explicit water is simulated using classical molecular dynamics. A ß-turn transition is investigated by calculating the topological complexity (in the "computational mechanics" framework [J. P. Crutchfield and K. Young, Phys. Rev. Lett., 63, 105 (1989)]) of the dynamics of both the peptide and the neighbouring water molecules. The complexity of the atomic trajectories of the (relatively short) simulations used in this study reflect the degree of phase space mixing in the system. It is demonstrated that the dynamic complexity of the hydrogen atoms of the peptide and almost all of the hydrogens of the neighbouring waters exhibit a minimum precisely at the moment of the ß-turn transition. This indicates the appearance of simplified periodic patterns in the atomic motion, which could correspond to high-dimensional tori in the phase space. It is hypothesized that this behaviour is the manifestation of the effect described in the approach to molecular transitions by Komatsuzaki and Berry [T. Komatsuzaki and R.S. Berry, Adv. Chem. Phys., 123, 79 (2002)], where a "quasi-regular" dynamics at the transition is suggested. Therefore, for the first time, the less chaotic character of the folding transition in a realistic molecular system is demonstrated. © Springer-Verlag Berlin Heidelberg 2006.
Resumo:
Two-way alternating automata were introduced by Vardi in order to study the satisfiability problem for the modal μ-calculus extended with backwards modalities. In this paper, we present a very simple proof by way of Wadge games of the strictness of the hierarchy of Motowski indices of two-way alternating automata over trees.
Resumo:
Trophic scaling models describe how topological food-web properties such as the number of predator prey links scale with species richness of the community. Early models predicted that either the link density (i.e. the number of links per species) or the connectance (i.e. the linkage probability between any pair of species) is constant across communities. More recent analyses, however, suggest that both these scaling models have to be rejected, and we discuss several hypotheses that aim to explain the scale dependence of these complexity parameters. Based on a recent, highly resolved food-web compilation, we analysed the scaling behaviour of 16 topological parameters and found significant power law scaling relationships with diversity (i.e. species richness) and complexity (i.e. connectance) for most of them. These results illustrate the lack of universal constants in food-web ecology as a function of diversity or complexity. Nonetheless, our power law scaling relationships suggest that fundamental processes determine food-web topology, and subsequent analyses demonstrated that ecosystem-specific differences in these relationships were of minor importance. As such, these newly described scaling relationships provide robust and testable cornerstones for future structural food-web models.
Resumo:
The present study on chaos and fractals in general topological spaces. Chaos theory originated with the work of Edward Lorenz. The phenomenon which changes order into disorder is known as chaos. Theory of fractals has its origin with the frame work of Benoit Mandelbrot in 1977. Fractals are irregular objects. In this study different properties of topological entropy in chaos spaces are studied, which also include hyper spaces. Topological entropy is a measures to determine the complexity of the space, and compare different chaos spaces. The concept of fractals can’t be extended to general topological space fast it involves Hausdorff dimensions. The relations between hausdorff dimension and packing dimension. Regular sets in Metric spaces using packing measures, regular sets were defined in IR” using Hausdorff measures. In this study some properties of self similar sets and partial self similar sets. We can associate a directed graph to each partial selfsimilar set. Dimension properties of partial self similar sets are studied using this graph. Introduce superself similar sets as a generalization of self similar sets and also prove that chaotic self similar self are dense in hyper space. The study concludes some relationships between different kinds of dimension and fractals. By defining regular sets through packing dimension in the same way as regular sets defined by K. Falconer through Hausdorff dimension, and different properties of regular sets also.
Resumo:
Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012
Resumo:
We introduce an easily computable topological measure which locates the effective crossover between segregation and integration in a modular network. Segregation corresponds to the degree of network modularity, while integration is expressed in terms of the algebraic connectivity of an associated hypergraph. The rigorous treatment of the simplified case of cliques of equal size that are gradually rewired until they become completely merged, allows us to show that this topological crossover can be made to coincide with a dynamical crossover from cluster to global synchronization of a system of coupled phase oscillators. The dynamical crossover is signaled by a peak in the product of the measures of intracluster and global synchronization, which we propose as a dynamical measure of complexity. This quantity is much easier to compute than the entropy (of the average frequencies of the oscillators), and displays a behavior which closely mimics that of the dynamical complexity index based on the latter. The proposed topological measure simultaneously provides information on the dynamical behavior, sheds light on the interplay between modularity and total integration, and shows how this affects the capability of the network to perform both local and distributed dynamical tasks.
Resumo:
Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.
Resumo:
The concepts of substantive beliefs and derived beliefs are defined, a set of substantive beliefs S like open set and the neighborhood of an element substantive belief. A semantic operation of conjunction is defined with a structure of an Abelian group. Mathematical structures exist such as poset beliefs and join-semilattttice beliefs. A metric space of beliefs and the distance of belief depending on the believer are defined. The concepts of closed and opened ball are defined. S′ is defined as subgroup of the metric space of beliefs Σ and S′ is a totally limited set. The term s is defined (substantive belief) in terms of closing of S′. It is deduced that Σ is paracompact due to Stone's Theorem. The pseudometric space of beliefs is defined to show how the metric of the nonbelieving subject has a topological space like a nonmaterial abstract ideal space formed in the mind of the believing subject, fulfilling the conditions of Kuratowski axioms of closure. To establish patterns of materialization of beliefs we are going to consider that these have defined mathematical structures. This will allow us to understand better cultural processes of text, architecture, norms, and education that are forms or the materialization of an ideology. This materialization is the conversion by means of certain mathematical correspondences, of an abstract set whose elements are beliefs or ideas, in an impure set whose elements are material or energetic. Text is a materialization of ideology.
Resumo:
Mythical and religious belief systems in a social context can be regarded as a conglomeration of sacrosanct rites, which revolve around substantive values that involve an element of faith. Moreover, we can conclude that ideologies, myths and beliefs can all be analyzed in terms of systems within a cultural context. The significance of being able to define ideologies, myths and beliefs as systems is that they can figure in cultural explanations. This, in turn, means that such systems can figure in logic-mathematical analyses.
Resumo:
Novel molecular complexity measures are designed based on the quantum molecular kinematics. The Hamiltonian matrix constructed in a quasi-topological approximation describes the temporal evolution of the modelled electronic system and determined the time derivatives for the dynamic quantities. This allows to define the average quantum kinematic characteristics closely related to the curvatures of the electron paths, particularly, the torsion reflecting the chirality of the dynamic system. A special attention has been given to the computational scheme for this chirality measure. The calculations on realistic molecular systems demonstrate reasonable behaviour of the proposed molecular complexity indices.
Resumo:
We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.