124 resultados para titrations
Resumo:
Content and Language Integrated Learning (CLIL)Materials in Chemistry and English following the principles of CLIL / Content-based Instruction and Task-based Learning
Resumo:
Content and Language Integrated Learning (CLIL)Materials in Chemistry and English following the principles of CLIL / Content-based Instruction and Task-based Learning
Resumo:
A simple tube-in-tube reactor based on the gas-permeable membrane Teflon AF-2400 was used in the continuous flow reaction of gaseous ammonia with isothiocyanates and one isocyanate. A colourimetric in-line titration technique is also reported as a simple method to quantify the amount of ammonia taken up by the solvent in the system.
Resumo:
The determination of acetic acid in vinegar adulterated sample using simultaneous potentiometric and condutometric titrations was used as an example of integrated experiment in instrumental analysis. An Excel® spreadsheet, which allows the entry of simultaneous data and the construction of the superimposed experimental curves (condutometric, potentiometric, first and second derivative potentiometric curve and, distribution diagrama of the acetic species as function of pH), was used as powerful tool to discuss the fundamental concepts involved in each technique and choose the best of them to quantify, without mutual interference, H3CCOOH and HCl in vinegar adulterated sample.
Resumo:
In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0-1 mol L(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental. data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid > citric acid > histidine > aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Hedamycin, a member of the pluramycin class of antitumour antibiotics, consists of a planar anthrapyrantrione chromophore to which is attached two aminosugar rings at one end and a bisepoxide-containing sidechain at the other end, Binding to double-stranded DNA is known to involve both reversible and non-reversible modes of interaction. As a part of studies directed towards elucidating the structural basis for the observed 5'-pyGT-3' sequence selectivity of hedamycin, we conducted one-dimensional NMR titration experiments at low temperature using the hexadeoxyribonucleotide duplexes d(CACGTG)(2) and d(CGTACG)(2). Spectral changes which occurred during these titrations are consistent with hedamycin initially forming a reversible complex in slow exchange on the NMR timescale and binding through intercalation of the chromophore. Monitoring of this reversible complex over a period of hours revealed a second type of spectral change which corresponds with formation of a non-reversible complex. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The solution conformation of a peptide LYS(11-36), which corresponds to the beta-sheet region in T4 lysozyme, has been examined in aqueous solution, TFE, and SDS micelles by CD and H-1 NMR spectroscopy. Secondary structure predictions suggest some beta-sheet and turn character in aqueous solution but predict a helical conformation in a more hydrophobic environment. The predictions were supported by the CD and NMR studies which showed the peptide to be relatively unstructured in aqueous solution, although there was some evidence of a beta-turn conformer which was maintained in 200 mM SDS and, to a lesser extent, in 50% TFE. The peptide was significantly helical in the presence of either 50% TFE or 200 mM SDS. TFE and SDS titrations showed that the peptide could form helical, sheet, or extended structure depending on the TFE or SDS concentration. The studies indicate that peptide environment is the determining factor in secondary structure adopted by LYS(11-36).
Resumo:
BACKGROUND - Multibacillary (MB) leprosy may be manifested with antiphospholipid antibodies (aPL), among which anti-beta(2)GP1 (beta(2)-glycoprotein 1). High titers of aPL are associated with APS (Antiphospholipid Syndrome), characterized by thrombosis. The mutation Val247Leu in the domain V of beta(2)GP1 exposes hidden epitopes with consequent development of anti-beta(2)GP1 antibodies. OBJECTIVE: To evaluate the Val247Leu polymorphism of beta(2)GP1 gene and its correlation with anti-beta(2)GP1 antibodies in leprosy patients. METHODS: The Val247Leu polymorphism was performed by PCR-RFLP and anti-beta(2)GP1 antibodies were measured by ELISA. RESULTS: The genotypic Val/Val was more prevalent in the leprosy group, compared to controls. Regarding the 7 MB patients with APS, four presented heterozygosis and three, Val/Val homozygosis. Although higher titrations of anti-beta(2)GP1 IgM antibodies were seen in MB leprosy group with Val/Leu and Val/Val genotypes, there was no statistical difference when compared to Leu/Leu genotype. CONCLUSION: The prevalence of Val/Val homozygosis in leprosy group can partially justify the presence of anti-beta(2)GP1 IgM antibodies in MB leprosy. The description of heterozygosis and Val/Val homozygosis in 7 patients with MB leprosy and thrombosis corroborates the implication of anomalous phenotype expression of beta(2)GP1 and development of anti-beta(2)GP1 antibodies, with consequent thrombosis and APS.
Resumo:
Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with Fe-III. In contrast, in the absence of Fel the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.
Resumo:
Improvements to peroxide oxidation methods for analysing acid sulfate soils (ASS) are introduced. The soil solution ratio has been increased to 1 : 40, titrations are performed in suspension, and the duration of the peroxide digest stage is substantially shortened. For 9 acid sulfate soils, the peroxide oxidisable sulfur value obtained using the improved method was compared with the reduced inorganic sulfur result obtained using the chromium reducible sulfur method. Their regression was highly significant, the slope of the regression line was not significantly different (P = 0.05) from unity, and the intercept not significantly different from zero. A complete sulfur budget for the improved method showed there was no loss of sulfur as has been reported for earlier peroxide oxidation techniques. When soils were very finely ground, efficient oxidation of sulfides was achieved, despite the milder digestion conditions. Highly sulfidic and organic soils were shown to be the most difficult to analyse using either the improved method or the chromium method. No single analytical method can be universally applied to all ASS, rather a suite of methods is necessary for a thorough understanding of many ASS. The improved peroxide method, in combination with the chromium method and the 4 M HCl extraction, form a sound platform for informed decision making on the management of acid sulfate soils.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
Iron chelators of the 2-pyridinecarbaldehyde isonicotinoylhydrazone (HPCIH) class show high potential for the treatment of iron overload diseases. In the present study, selected first-row transition metal (from Mn to Zn) complexes with HPCIH and 2-pyridinecarbaldehyde (4'-aminobenzoyl)hydrazone (HPCAH) were synthesised and characterised. Crystallography reveals that HPCAH exclusively forms bis complexes with divalent transition metals, with each ligand coordinating meridionally through its pyridine-N, imine-N and carbonyl-O atoms, forming distorted octahedral cis-MN4O2 complexes. Complexes of HPCIH were more varied and unpredictable, with metal/ligand ratios of 1:1, 1:2, 2:2 and 3:2 obtained with different metal ions. The isonicotinoyl ring N-atom in HPCIH was found to be an effective ligand, and this resulted in the varied metal/ligand ratios observed. The formation constants of divalent metal complexes with HPCIH were determined by potentiometric titrations and the values obtained were consistent with similar tridentate ligands and with the Irving-Williams order. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Bioquímica, especialidade Bioquímica-Física, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa
Resumo:
A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.