987 resultados para titanium composites
Resumo:
Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.
Resumo:
Standard Test Methods (e.g. ASTM, DIN) for materials characterization in general, and for fatigue in particular, do not contemplate specimens with complex geometries, as well as the combination of axial and in-plane bending loads in their methodologies. The present study refers to some patents and the new configuration or configurations of specimens (non-standardized by the status quo of test methods) and a device developed to induce axial and bending combined forces resultants from axial loads applied by any one test equipment (dynamic or monotonic) which possesses such limitation, towards obtaining more realistic results on the fatigue behavior, or even basic mechanical properties, from geometrically complex structures. Motivated by a specific and geometrically complex aeronautic structure (motor-cradle), non-standardized welded tubular specimens made from AISI 4130 steel were fatigue-tested at room temperature, by using a constant amplitude sinusoidal load of 20 Hz frequency, load ratio R = 0.1 with and without the above referred auxiliary fatigue apparatus. The results showed the fatigue apparatus was efficient for introducing higher stress concentration factor at the welded specimen joints, consequently reducing the fatigue strength when compared to other conditions. From the obtained results it is possible to infer that with small modifications the proposed apparatus will be capable to test a great variety of specimen configurations such as: squared tubes and plates with welded or melted junctions, as well as other materials such as aluminum, titanium, composites, polymeric, plastics, etc. © 2009 Bentham Science Publishers Ltd.
Resumo:
The research work on bulk hydroxyapatite (HA)-based composites are driven by the need to develop biomaterials with better mechanical properties without compromising its bioactivity and biocompatibility properties. Despite several years of research, the mechanical properties of the HA-based composites still need to be enhanced to match the properties of natural cortical bone. In this regard, the scope of this review on the HA-based bulk biomaterials is limited to the processing and the mechanical as well as biocompatibility properties for bone tissue engineering applications of a model system that is hydroxyapatite-titanium (HA-Ti) bulk composites. It will be discussed in this review how HA-Ti based bulk composites can be processed to have better fracture toughness and strength without compromising biocompatibility. The advantages of the functionally gradient materials to integrate the mechanical and biocompatibility properties is a promising approach in hard tissue engineering and has been emphasized here in reference to the limited literature reports. On the biomaterials fabrication aspect, the recent results are discussed to demonstrate that advanced manufacturing techniques, like spark plasma sintering can be adopted as a processing route to restrict the sintering reactions, while enhancing the mechanical properties. Various toughening mechanisms related to careful tailoring of microstructure are discussed. The in vitro cytocompatibilty, cell fate processes as well as in vivo biocompatibility results are also reviewed and the use of flow cytometry to quantify in vitro cell fate processes is being emphasized. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.
Resumo:
The present study reports the results of the detailed in vitro bioactivity and cytocompatibility properties of the hydroxyapatite (HA) and the HA-titanium (HA-Ti) composite with varying amount of Ti (5, 10, and 20 wt %), densified using spark plasma sintering process (SPS). Using this technique and tailoring suitable processing parameters, it has been possible to retain both HA and Ti in the sintered ceramics. Importantly, the uniquely designed SPS processing with suitably chosen parameters enables in achieving better mechanical properties, such as higher indentation fracture toughness (similar to 1.5 MPa m1/2) in HA-Ti composites compared with HA. X-ray diffraction and scanning electron microscopic (SEM) observations reveal good bioactivity of the HA-Ti composites with the formation of thick, flaky, and porous apatite layer when immersed in simulated body fluid at 37 degrees C and pH of 7.4. Atomic absorption spectroscopic analysis of the simulated body fluid solution reveals dynamic changes in Ca+2 ion concentration with more dissolution of Ca+2 ion from the HA-20Ti composite. However, the measurements with inductively coupled plasma spectrometer do not record dissolution of Ti+4 ions. Transmission electron microscopic analysis indicates weak crystalline nature of the apatite and confirms the formation of fine-scale apatite crystals. MTT assay, fluorescence, and SEM study demonstrate good cell viability and cell adhesion/proliferation of the Saos -2 cells, cultured on the developed composites under standard culture condition, and the difference in cell viability has been discussed in reference to substrate composition and roughness. Overall, HA-Ti composites exhibit comparable and even better in vitro bioactivity and cytocompatibility properties than HA. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
Resumo:
Among various biologically compatible materials, hydroxyapatite (HA) has excellent bioactivity/osteointegration properties and therefore has been extensively investigated for biomedical applications. However, its inferior fracture toughness limits the wider applications of monolithic HA as a load-bearing implant. To this end, HA-based biocomposites have been developed to improve their mechanical properties (toughness and strength) without compromising biocompatibility. Despite significant efforts over last few decades, the toughness of HA-based composites could not be enhanced beyond 1.5-2 MPa m(1/2), even when measured using indentation techniques. In this perspective, the present work demonstrates how spark plasma sintering can be effectively utilized to develop hydroxyapatite titanium (HA-Ti) composites with varying amounts of Ti (5, 10 and 20 wt.%) with extremely high single edge V-notch beam fracture toughness (4-5 MPa m(1/2)) along with a good combination of elastic modulus and flexural strength. Despite predominant retention of HA and Ti, the combination of critical analysis of X-ray diffraction and transmission electron microscopy investigation confirmed the formation of the CaTi4(PO4)(6) phase with nanoscale morphology at the HA/Ti interface and the formation of such a phase has been discussed in reference to possible sintering reactions. The variations in the measured fracture toughness and work of fracture with Ti addition to the HA matrix were further rationalized using the analytical models of crack bridging as well as on the basis of the additional contribution from crack deflection. The present work opens up the opportunity to further enhance the toughness beyond 5 MPa m(1/2) by microstructural designing with the desired combination of toughening phases. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hydroxyapatite (HA)-based biocomposites have been widely investigated for a multitude of applications and these studies have been largely driven to improve mechanical properties (toughness and strength) without compromising cytocompatibility properties. Apart from routine cell viability/proliferation analysis, limited efforts have been made to quantify the fate processes (cell proliferation, cell cycle, and cell apoptosis) of human fetal osteoblast (hFOB) cells on HA-based composites, in vitro. In this work, the osteoblast cell fate process has been studied on a model hydroxyapatite-titanium (HA-Ti) system using the flow cytometry. In order to retain both HA and Ti, the novel processing technique, that is, spark plasma sintering, was suitably adopted. The cell fate processes of hFOBs, as evaluated using a flow cytometry, revealed statistically insignificant differences among HA-10 wt % Ti and HA and control (tissue culture polystyrene surface) in terms of osteoblast apoptosis, proliferation index as well as division index. For the first time, we provide quantified flow cytometry results to demonstrate that 10 wt % Ti additions to HA do not have any significant influence on the fate processes of human osteoblast-like cells, in vitro.
Resumo:
Titanium carbide (TiC) is an electrically conducting refractory interstitial compound possessing several unique properties. A cost-effective, efficient and non-Pt electrocatalyst based on TiC is explored and the multi-functionality of TiC towards various electrochemical reactions that are of significant interest in low temperature fuel cells is studied. Ameliorated activities towards oxygen reduction reaction (ORR) and borohydride oxidation are observed with TiC-carbon composites. High sensitivity and selectivity towards ORR have been demonstrated with very good methanol tolerance. The charge transfer interactions between TiC and carbon seem to play a vital role in the improved activity as compared to their individual counterparts. The present study opens up a way to realize completely Pt-free borohydride fuel cell architecture.
Resumo:
Titanium carbide reinforced nickel aluminide matrix in situ composites were produced using a newly patented laser melting furnace. Microstructure of the laser melted TiC/(Ni3Al–NiAl) in situ composites was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results showed that the constituent phases in the laser melted in situ composites are TiC, Ni3Al and NiAl. Volume fraction of TiC and NiAl increase with increasing content of titanium and carbon. The growth morphology of the reinforcing TiC carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid.
Resumo:
The Mg-based metal matrix composite reinforced by 10 wt.% W14Al86 alloy particles has been prepared by mechanical alloying and press-forming process. X-ray diffraction studies confirm the formation of the composite. Microstructure characterization of the samples reveals the uniform distribution of fine W14Al86 alloy. Mechanical properties characterization revealed that the reinforcement of W14Al86 alloy lead to a significant increase in hardness and tensile strength of Mg and AZ91.
Resumo:
Composites with antimicrobial activity are of great interest nowadays and the development of titanium dioxide with these functional properties presents interest in academic and industrial sectors.An approach to develop PE composite containing silver microparticles to have an antimicrobial effect is presented. To obtain such antimicrobial composites, LDPE/EVA were processed with Ag particles on TiO2 particles as inorganic carrier substance. Titanium dioxide nanoparticles (P-25) were covered with silver particles using Turkevich Method or citrate reduction method. The Ag/TiO2 particles were dispersed at concentration of 0,8 wt% and 1% wt% in LDPE/ethylene vinyl acetate copolymer (EVA)-(50% w/w) at the melt state in a Haake torque Rheometer. Silver microparticles were characterized with UV-Vis Spectroscopy. The composites thus prepared were characterized through XRD, Ares Rheometer, Scanning Electronic Microscopy (SEM) and JIS Z 2801 antimicrobial tests to study the effects of the addition of particles on rheological properties, morphological behavior and antimicrobial properties. The results showed that incorporation of silver/titanium dioxide particles on composites obtained systems with differents dispersions. The Ag/TiO2 particles showed uniform distribution of Ag on TiO2 particles as observed by SEM-EDX and antimicrobial tests according to JIS Z 2801 shows excellent antimicrobial properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)