861 resultados para titania nanotube
Resumo:
The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.
Resumo:
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO(2) is discussed here. TiO(2) nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO(2) (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO(2) nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO(2) nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO(2) nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO(2) nanotubes. The homogeneously coated amorphous carbon over TiO(2) renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO(2) due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Electrolysis is the most mature form of hydrogen production. Unfortunately, water electrolysis has not yet achieved the efficiency and the cost levels required for any practical application. In order to enhance the current density, modification of the electrolyte and the electrode morphology are the most popular approaches. Recently there have been numerous reports on how to improve the efficiency of hydrogen production by water splitting [1-3]. On the electrode side, the use of non-platinum high efficiency electrode materials for water splitting will provide a promising future for the hydrogen economy. An ideal electrode for water electrolysis should have good permeability to water and gas. It should also offer good electrical properties with a long life. A porous graphite plate, when coated with titania, for example, is known to provide a simple and economical electrode for water electrolysis [4]. © 2010 IEEE.
Resumo:
Well-aligned TiO2/Ti nanotube arrays were electrochemically formed in a HF solution for different anodization times. Field emission scanning electron microscopy (FE-SEM) images reveal that anodization time had a great influence on the morphology of TiO2/Ti nanotube arrays. The composition of resulting nanotubes was analyzed by X-ray photoelectron spectroscopy (XPS). Field emission properties of the prepared samples with different morphologies were investigated by the Fowler-Nordheim (F-N) theory. The results indicate that the morphology can affect field emission behaviors. TiO2/Ti nanotube arrays with clear, uniform, and short nanotubes display moderate field emission properties, and have the better turn-on field of 4.6 V/mu m and good field emission stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between -50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.
Resumo:
High resolution thermogravimetry has been used to evaluate the carbonaceous content in a commercial sample of single-walled carbon nanotube (SWNT). The content of SWNTs in the sample was found to be at least 77mass% which was supported by images obtained with scanning and transmission electron microscopies (SEM and TEM). Furthermore, the influence of SWNT addition on the thermal stability of graphite in mixtures of SWNT/graphite at different proportions was investigated. The graphite stability decreased with the increased of SWNT content in the overall range of composition. This behavior could be due to the close contact between these carbonaceous species as determined by SEM analysis.
Resumo:
Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.