832 resultados para tissue culture and plant regeneration
Resumo:
Plants may be regenerated from stomatal cells or protoplasts of such cells. Prior to regeneration the cells or protoplasts may be genetically transformed by the introduction of hereditary material most preferably by a DNA construct which is free of genes which specify resistance to antibiotics. The regeneration step may include callus formation on a hormone-free medium. The method is particularly suitable for sugar beet.
Resumo:
Callus was initiated in three different ‘‘esculenta’’ taro cultivars by culturing corm slices in the dark on half-strength MS medium supplemented with 2.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 20 days followed by subculture of all corm slices to half-strength MS medium containing 1.0 mg/l thidiazuron (TDZ). Depending on the cultivar, 20–30% of corm slices produced compact, yellow, nodular callus on media containing TDZ. Histological studies revealed the presence of typical embryogenic cells which were small, isodiametric with dense cytoplasms. Somatic embryos formed when callus was transferred to hormone-free medium and *72% of the embryos germinated into plantlets on this medium. Simultaneous formation of roots and shoots during germination, and the presence of shoot and root poles revealed by histology, confirmed that these structures were true somatic embryos. Plants derived from somatic embryos appeared phenotypically normal following 2 months growth in a glasshouse. This method is a significant advance on those previously reported for the esculenta cultivars of taro due to its efficiency and reproducibility.
Resumo:
Embryogenic callus was initiated by culturing in vitro taro corm slices on agar-solidified half-strength MS medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) for 20 days followed by transfer to 1.0 mg/L thidiazuron (TDZ). Callus was subsequently proliferated on solid medium containing 1.0 mg/L TDZ, 0.5 mg/L 2,4- D and 800 mg/L glutamine before transfer to liquid medium containing the same components but with reduced glutamine (100 mg/L). After 3 months in liquid culture on an orbital shaker, cytoplasmically dense cell aggregates began to form. Somatic embryogenesis was induced by plating suspension cells onto solid media containing reduced levels of hormones (0.1 mg/L TDZ, 0.05 mg/L 2,4-D), high concentrations of sucrose (40–50 g/L) and biotin (1.0 mg/L). Embryo maturation and germination was then induced on media containing 0.05 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-acetic acid (IAA). Histological studies of the developing embryos revealed the presence of typical shoot and root poles suggesting that these structures were true somatic embryos. The rate of somatic embryos formation was 500–3,000 per mL settledcell volume while approximately 60% of the embryos regenerated into plants.
Resumo:
Calendula officinalis is grown widely as an ornamental plant across Europe. It belongs to the large. Asteraceae family. In this study, the aim was to explore the possibilities to use Calendula officinalis as a new model organism for flower development and secondary mechanism studies in Asteraceae. Tissue culture of Calendula officinalis was established using nine different cultivars. Murashige & Skoog (MS) medium with four different combinations of plant growth regulators were tested. Of all these combinations, the medium containing 1mg/l BAP, 0.1 mg/l IAA, and 1mg/l Zeatin achieved highest frequency of adventitious shoot regeneration from hypocotyl and cotyledon explants. Virus-induced gene silencing is a recent developed genetic tool for charactering the gene functions in plants, and extends the range of host plants that are not accessible for Agrobacterium transformation. Here, tobacco rattle virus (TRV)-based VIGS technique was tested in calendula (cv. Single Orange). We used TRV carrying Gerbera hybrid phytoene desaturase (PDS) gene fragment to induce PDS silencing in calendula. Vacuum infiltration and syringe infiltration methods both resulted in photo-bleaching phenotypes in leaves, bracts and petals. Loss-of-function phenotypes occurred on calendula 13 days post-infiltration. In conclusion, the data indicates that calendula explants can be regenerated through tissue culture which is a prerequisite for development of stable transformation methods. However, further optimization is still needed to improve the frequency. In addition, VIGS was applied to silence PDS marker gene expression indicating that this method has potential for gene functional studies in future.
Resumo:
“Um desidro-rotenóide produzido por cultura de calos e por raízes de plantas silvestres de Boerhaavia coccinea”. Cultura de calos foram estabelecidos de folhas e galhos finos de plântula de B. coccinea produzida in vitro e analisada para isofl avonóide. A quantificação do 6,9,11-triidroxi-6a,12a-desidro-rotenóide isolado das raízes de B. coccinea P Miller, coletada em seu habitat natural, e do mesmo rotenóide produzido na cultura de células estão descritos neste artigo. A análise rotineira em CLAE mostrou que a cultura de calos produziu o mesmo isoflavonóide encontrado nas raízes da planta do campo. A quantidade do metabólito secundário produzido in vitro foi de 955.35
Resumo:
Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus) require root post-embryonic developmental programs as well as regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation is delivered during lateral root initiation and callus formation. Implications in reprograming, cell fate and pluripotency acquisition are discussed. Finally, we analyze the function of cell cycle regulators and connections with epigenetic regulation. Future work dissecting plant organogenesis driven by both endogenous and exogenous cues (upon hormonal induction) may reveal new paradigms of common regulation.
Resumo:
Callus cultures were established from hypocotyls and cotyledons derived from young seedlings of Eucalyptus citriodora. Successful plantlet production from cotyledonary callus was achieved within 6 weeks on Murashige and Skoog's basal medium supplemented with zeatin (1 mg/l) and indoleacetic acid (0.2 mg/l). Leaf and shoot callus obtained from one-year-old plants did not differentiate. Results reported contribute to defining optimal conditions for callus growth and plantlet formation
Resumo:
Mode of access: Internet.
Resumo:
以陆地棉(Gossypium hirsutum L.)栽培品种新陆早4号、系550、冀资492、衡无89-30、邯93-2、冀资123等为材料,进行了组织培养及植株再生研究,建立了一套陆地棉体细胞植株再生速成体系。通过调整激素种类与比例以及改善培养条件,降低了畸形胚发生频率(从80%降为41%),并可将畸形苗转化为正常苗(转化率约为78%);通过水培和嫁接,结合试管扦插、扩繁技术,解决了棉花生根及移栽难题,为农杆菌介导法转化棉花奠定了基础。 用绿色荧光蛋白基因(gfp)作为报告基因,构建了pBGb1m(含Bt和gfp二价基因)、pBGbf(含Bt-gfp融合基因)和pBGbfg(含Bt-gfp融合基因和gna基因)等三种植物表达载体。通过农杆菌介导法转化烟草,转基因再生植株经过荧光、虫试、PCR、Southern blot和Western blot等检测,表明三种植物表达载体能够在转基因植物中有效表达,同时,绿色荧光蛋白(GFP)的检测表现出了简便、经济、快速、可靠等优点,为大量棉花转基因苗的检测提供了一种有效方法。 采用花粉管通道法将携带细胞间隙定位信号肽的Bt基因的pBin438-S1m质粒导入棉花品种冀资492,经过田间卡那霉素筛选、虫试、PCR、PCR-Southern blot和Southern blot检测,证明Bt基因已整合至棉花基因组中,而且可能是以单拷贝形式插入。 同时,通过农杆菌介导法将三种植物表达载体(pBGb1m、pBGbf和pBGbfg)转化陆地棉栽培品种新陆早4号、冀资492、衡无89-30和邯93-2等材料,获得了大量转化再生棉株。经过PCR和PCR-Southern blot检测,转基因阳性植株为转为再生植株总数的89.45%。目前,虫试、Southern blot及Western blot正在进行之中。
Resumo:
Multiple shoots were induced from nodal segments of five year old trees of Eucalyptus grandis L. on solid medium containing Murashige and Skoog's (MS) Basal medium supplemented with additional thiamine, BAP and NAA. Rooting could be achieved from shoot culture on half strength MS salts or white's medium supplemented with low auxins like IAA, IBA and NAA.
Resumo:
Intimin, an outer membrane protein encoded by eaeA, is a key determinant for the formation of attaching and effacing (AE) lesions by enterohaemorrhagic Escherichia coli (EHEC). To investigate the role of intimin in adherence, the eaeA gene was insertionally inactivated in three EHEC O157:H7 strains of diverse origin. The absence or presence of intimin did not correlate with the extent of adhesion of mutant or wild-type O157:H7 in tissue culture and neonatal calf gut tissue explant adherence assays. Adherence of the eaeA mutants to HEp-2 cells was diffuse with no evidence of intimate attachment whereas wild-type bacteria formed microcolonies and AE lesions. Intimin-independent adherence to neonatal calf gut explants was demonstrated by eaeA mutants and wild-type strains which adhered in the greatest numbers to colon but least well to rumen tissue. These results confirm that intimin is necessary for intimate attachment and that additional adherence factors are involved in intimin-independent adherence.