996 resultados para time-kill curve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ent-kaur-16(17)-en-19-oic acid (kaurenoic acid, KA) is a tetracyclic diterpene prototype for natural anticaries agents. Six KA derivatives were prepared and their antimicrobial activity against the main microorganisms involved in the caries process evaluated. The sodium salt of KA (KA-Na) was the most active, displaying very promising MIC values for most pathogens. Time-kill assays against the primary causative agent of caries (Streptococcus mutans) indicated that KA and KA-Na only inhibited growth in the first 12 h, suggesting a bacteriostatic effect. After this period (12-24 h), their bactericidal effect was clearly noted. KA and KA-Na showed no synergy when combined with the gold standard anticariogenic (chlorhexidine dihydrochloride, CHD) in the checkerboard assays against S. mutans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several types of drugs currently used in clinical practice were screened in vitro for their potentiation of the antifungal effect of the fungistatic agent fluconazole (FLC) on Candida albicans. These drugs included inhibitors of multidrug efflux transporters, antimicrobial agents, antifungal agents, and membrane-active compounds with no antimicrobial activity, such as antiarrhythmic agents, proton pump inhibitors, and platelet aggregation inhibitors. Among the drugs tested in an agar disk diffusion assay, cyclosporine (Cy), which had no intrinsic antifungal activity, showed a potent antifungal effect in combination with FLC. In a checkerboard microtiter plate format, however, it was observed that the MIC of FLC, as classically defined by the NCCLS recommendations, was unchanged when FLC and Cy were combined. Nevertheless, if a different reading endpoint corresponding to the minimal fungicidal concentration needed to decrease viable counts by at least 3 logs in comparison to the growth control was chosen, the combination was synergistic (fractional inhibitory concentration index of <1). This endpoint fitted to the definition of MIC-0 (optically clear wells) and reflected the absence of the trailing effect, which is the result of a residual growth at FLC concentrations greater than the MIC. The MIC-0 values of FLC and Cy tested alone in C. albicans were >32 and >10 microg/ml, respectively, and decreased to 0.5 and 0.625 microg/ml when the two drugs were combined. The combination of 0.625 microg of Cy per ml with supra-MICs of FLC resulted in a potent antifungal effect in time-kill curve experiments. This effect was fungicidal or fungistatic, depending on the C. albicans strain used. Since the Cy concentration effective in vitro is achievable in vivo, the combination of this agent with FLC represents an attractive perspective for the development of new management strategies for candidiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nontuberculous mycobacteria are ubiquitous and saprophytic organisms that have been implicated in a wide spectrum of diseases due to an increasing number of immunocompromised patients. The natural resistance of atypical mycobacteria to classical antituberculous drugs has encouraged research into new chemotherapeutic agents and drug combinations. The aim of this study was to determine the in vitro antimycobacterial activities of ²-lapachone alone and in combination with isoniazid against Mycobacterium fortuitum and Mycobacterium smegmatis via the Time-Kill Curve method. A 2 log10 CFU/mL reduction in the M. smegmatis culture was observed 72 h after adding ²-lapachone at its minimum inhibitory concentration. This drug sterilised the culture in 120 h. For M. fortuitum, a reduction of 1.55 log10 CFU/mL occurred in 24 h, but regrowth was seen in contact with ²-lapachone. Both microorganisms were resistant to isoniazid. Regrowth of M. fortuitum and M. smegmatis was observed at 48 h and 72 h, respectively. In combination, these two drugs had a bactericidal effect and sterilised both cultures in 96 h. These results are valuable because antibiotic-resistant bacteria are a major public health problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococcus spp (CNS) are the most common pathogens that cause serious long term infections in patients. Despite the existence of new antimicrobial agents, such as linezolid, vancomycin (VAN) remains the standard therapy for the treatment of infections caused by these multidrug-resistant strains. However, the use of VAN has been associated with a high frequency of therapeutic failures in some clinical scenarios, mainly with decreasing concentration of VAN. This work aims to evaluate the synergic potential of VAN plus sulfamethoxazole/trimethoprim (SXT), VAN plus rifampin (RIF) and VAN plus imipenem (IPM) in sub-minimum inhibitory concentrations against 22 clinical strains of MRSA and CNS. The checkerboard method showed synergism of VAN/RIF and VAN/SXT against two and three of the 22 strains, respectively. The combination of VAN with IPM showed synergistic effects against 21 out of 22 strains by the E-test method. Four strains were analyzed by the time-kill curve method and synergistic activity was observed with VAN/SXT, VAN/RIF and especially VAN/IPM in sub-inhibitory concentrations. It would be interesting to determine if synergy occurs in vivo. Evidence of in vivo synergy could lead to a reduction of the standard VAN dosage or treatment time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The therapeutic efficacy of BAL9141 (formerly Ro 63-9141), a novel cephalosporin with broad in vitro activity that also has activity against methicillin-resistant Staphylococcus aureus (MRSA), was investigated in rats with experimental endocarditis. The test organisms were homogeneously methicillin-resistant S. aureus strain COL transformed with the penicillinase-encoding plasmid pI524 (COL Bla+) and homogeneously methicillin-resistant, penicillinase-producing isolate P8-Hom, selected by serial exposure of parent strain P8 to methicillin. The MICs of BAL9141 for these organisms (2 mg/liter) were low, and BAL9141was bactericidal in time-kill curve studies after 24 h of exposure to either two, four, or eight times the MIC. Rats with experimental endocarditis were treated in a three-arm study with a continuous infusion of BAL5788 (formerly Ro 65-5788), a carbamate prodrug of BAL9141, or with amoxicillin-clavulanate or vancomycin. The rats were administered BAL9141 to obtain steady-state target levels of 20, 10, and 5 mg of per liter or were administered either 1.2 g of amoxicillin-clavulanate (ratio 5:1) every 6 h or 1 g of vancomycin every 12 h at changing flow rates to simulate the pharmacokinetics produced in humans by intermittent intravenous treatment. Treatment was started 12 h after bacterial challenge and lasted for 3 days. BAL9141 was successful in the treatment of experimental endocarditis due to either MRSA isolate COL Bla+ or MRSA isolate P8-Hom at the three targeted steady-state concentrations and sterilized >90% of cardiac vegetations (P < 0.005 versus controls; P < 0.05 versus amoxicillin-clavulanate and vancomycin treatment groups). These promising in vivo results with BAL9141 correlated with the high affinity of the drug for PBP 2a and its stability to penicillinase hydrolysis observed in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of fluconazole (FLC) and cyclosporine (CY) is fungicidal in FLC-susceptible C. albicans (O. Marchetti, P. Moreillon, M. P. Glauser, J. Bille, and D. Sanglard, Antimicrob. Agents Chemother. 44:2373-2381, 2000). The mechanism of this synergism is unknown. CY has several cellular targets including multidrug efflux transporters. The hypothesis that CY might inhibit FLC efflux was investigated by comparing the effect of FLC-CY in FLC-susceptible parent CAF2-1 (FLC MIC, 0.25 mg/liter) and in FLC-hypersusceptible mutant DSY1024 (FLC MIC, 0.03 mg/liter), in which the CDR1, CDR2, CaMDR1, and FLU1 transporter genes have been selectively deleted. We postulated that a loss of the fungicidal effect of FLC-CY in DSY1024 would confirm the roles of these efflux pumps. Time-kill curve studies showed a more potent fungistatic effect of FLC (P = 0.05 at 48 h with an inoculum of 10(3) CFU/ml) and a more rapid fungicidal effect of FLC-CY (P = 0.05 at 24 h with an inoculum of 10(3) CFU/ml) in the FLC-hypersusceptible mutant compared to those in the parent. Rats with experimental endocarditis were treated for 2 or 5 days with high-dose FLC, high-dose CY, or both drugs combined. FLC monotherapy for 5 days was more effective against the hypersusceptible mutant than against the parent. However, the addition of CY to FLC still conferred a therapeutic advantage in animals infected with mutant DSY1024, as indicated by better survival (P = 0.04 versus the results obtained with FLC) and sterilization of valves and kidneys after a very short (2-day) treatment (P = 0.009 and 0.002, respectively, versus the results obtained with FLC). Both in vitro and in vivo experiments consistently showed that the deletion of the four membrane transporters in DSY1024 did not result in loss of the fungicidal effect of FLC-CY. Yet, the accelerated killing in the mutant suggested a "dual-hit" mechanism involving FLC hypersusceptibility due to the efflux pump elimination and fungicidal activity conferred by CY. Thus, inhibition of multidrug efflux transporters encoded by CDR1, CDR2, CaMDR1, and FLU1 genes is not responsible for the fungicidal synergism of FLC-CY. Other cellular targets must be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of resistant strains to conventional antimicrobial drugs has been constant as well as research aimed new alternatives of antibacterial agents. Therefore, considering that natural products have been an important potential source of new antimicrobial drugs, aim to verify the synergism by disk and time kill curve method between antimicrobials (extracts-Ext. and essential oils-EO) from four plant and eight antimicrobial drugs against Staphylococcus aureus and Escherichia coli strains from human specimens. The S. aures strains were highly susceptible with all plant antimicrobials (eg., 1.24 mg/ml with Vernonia polyanthes Ext. and 2.21 mg/ml with Eugenia uniflora EO for the Minimal Inhibitory Concentration-MIC). According disk method, the Bacharis dracunculifolia and V. polyanthes EO had synergism with all eight tested drugs while only Matricaria chamomilla Ext. showed synergism against S. aureus. The synergism was found with V. polyanthes and E. uniflora Ext. while M. chamomilla Ext. had antagonism against E. coli strains. By time kill curve, the bacterial growth inhibition was superior when drugs were tested alone and the synergism effect also was verified. The antagonism effect was detected only for E. coli strains and only with Ext. Results indicated the potential use of these products as coadjutants during treatment of infectious diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work, the anticariogenic activities of three pimarane-type diterpenes obtained by fungal biotransformation were investigated. Among these metabolites, ent-8(14), 15-pimaradien-19-ol was the most active compound, displaying very promising MIC values (ranging from 1.5 to 4.0 mu g mL(-1)) against the main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis, and Lactobacillus casei. Time kill assays performed with ent-8(14), 15-pimaradien-19-ol against the primary causative agent S. mutans revealed that this compound only avoids growth of the inoculum in the first 12 h (bacteriostatic effect). However, its bactericidal effect is clearly noted thereafter (between 12 and 24 h). The curve profile obtained by combining ent-8(14), 15-pimaradien-19-ol and chlorhexidine revealed a significant reduction in the time necessary for killing S. mutans compared with each of these two chemicals alone. However, no synergistic effect was observed using the same combination in the checkerboard assays against this microorganism. In conclusion, our results point out that ent-8(14), 15-pimaradien-19-ol is an important metabolite in the search for new effective anticariogenic agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent Salmonella outbreaks have prompted the need for new processing options for peanut products. Traditional heating kill-steps have shown to be ineffective in lipid-rich matrices such as peanut products. High pressure processing is one such option for peanut sauce because it has a high water activity, which has proved to be a large contributing factor in microbial lethality due to high pressure processing. Four different formulations of peanut sauce were inoculated with a five strain Salmonella cocktail and high pressure processed. Results indicate that increasing pressure or increasing hold time increases log10 reductions. The Weibull model was fitted to each kill curve, with b and n values significantly optimized for each curve (p-value < 0.05). Most curves had an n parameter value less than 1, indicating that the population had a dramatic initial reduction, but tailed off as time increased, leaving a small resistant population. ANOVA analysis of the b and n parameters show that there are more significant differences between b parameters than n parameters, meaning that most treatments showed similar tailing effect, but differed on the shape of the curve. Comparisons between peanut sauce formulations at the same pressure treatments indicate that increasing amount of organic peanut butter within the sauce formulation decreases log10 reductions. This could be due to a protective effect from the lipids in the peanut butter, or it may be due to other factors such as nutrient availability or water activity. Sauces pressurized at lower temperatures had decreased log10 reductions, indicating that cooler temperatures offered some protective effect. Log10 reductions exceeded 5 logs, indicating that high pressure processing may be a suitable option as a kill-step for Salmonella in industrial processing of peanut sauces. Future research should include high pressure processing on other peanut products with high water activities such as sauces and syrups as well as research to determine the effects of water activity and lipid composition with a food matrix such as peanut sauces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In experimental meningitis a single dose of gentamicin (10 mg/kg of body weight) led to gentamicin levels in around cerebrospinal fluid (CSF) of 4 mg/liter for 4 h, decreasing slowly to 2 mg/liter 4 h later. The CSF penetration of gentamicin ranged around 27%, calculated by comparison of areas under the curve (AUC in serum/AUC in CSF). Gentamicin monotherapy (-1.24 log(10) CFU/ml) was inferior to vancomycin monotherapy (-2.54 log(10) CFU/ml) over 8 h against penicillin-resistant pneumococci. However, the combination of vancomycin with gentamicin was significantly superior (-4.48 log(10) CFU/ml) compared to either monotherapy alone. The synergistic activity of vancomycin combined with gentamicin was also demonstrated in vitro in time-kill assays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This in vitro study evaluated the antimicrobial activity of extracts obtained from Rheedia brasiliensis fruit (bacupari) and its bioactive compound against Streptococcus mutans. Hexane, ethyl-acetate and ethanolic extracts obtained (concentrations ranging from 6.25 to 800 mu g/ml) were tested against S. mutans UA159 through MIC/MBC assays. S. mutans 5-days-old biofilms were treated with the active extracts (100 x MIC) for 0, 1, 2, 3 and 4 h (time-kill) and plated for colony counting (CFU/ml). Active extracts were submitted to exploratory chemical analyses so as to isolate and identify the bioactive compound using spectroscopic methods. The bioactive compound (concentrations ranging from 0.625 to 80 mu g/ml) was then tested through MIC/MBC assays. Peel and seed hexane extracts showed antimicrobial activity against planktonic cells at low concentrations and were thus selected for the time kill test. These hexane extracts reduced S. mutans biofilm viability after 4 h, certifying of the bioactive compound presence. The bioactive compound identified was the polyprenylated benzophenone 7-epiclusianone, which showed a good antimicrobial activity at low concentrations (MIC: 1.25-2.5 mu g/ml; MBC: 10-20 mu g/ml). The results indicated that 7-epiclusianone may be used as a new agent to control S. mutans biofilms; however, more studies are needed to further elucidate the mechanisms of action and the anticariogenic potential of such compound found in R. brasiliensis. (C) 2008 Elsevier GmbH. All rights reserved.