957 resultados para time evolution
Resumo:
The South Atlantic Magnetic Anomaly (SAMA) is one of the most outstanding anomalies of the geomagnetic field. The SAMA secular variation was obtained and compared to the evolution of other anomalies using spherical harmonic field models for the 1590-2005 period. An analysis of data from four South American observatories shows how this large scale anomaly affected their measurements. Since SAMA is a low total field anomaly, the field was separated into its nondipolar, quadrupolar and octupolar parts. The time evolution of the non-dipole/total, quadrupolar/total and octupolar/total field ratios yielded increasingly high values for the South Atlantic since 1750. The SAMA evolution is compared to the evolution of other large scale surface geomagnetic features like the North and the South Pole and the Siberia High, and this comparison shows the intensity equilibrium between these anomalies in both hemispheres. The analysis of non-dipole fields in historical period suggests that SAMA is governed by (i) quadrupolar field for drift, and (ii) quadrupolar and octupolar fields for intensity and area of influence. Furthermore, our study reinforces the possibility that SAMA may be related to reverse fluxes in the outer core under the South Atlantic region.
Resumo:
In this paper, we study the behavior of immune memory against antigenic mutation. Using a dynamic model proposed by one of the authors in a previous study (A. de Castro [Phys. J. Appl. Phys. 33, 147 (2006) and Simul. Mod. Pract. Theory. 15, 831 (2007)]), we have performed simulations of several inoculations, where in each virtual sample the viral population undergoes mutations. Our results suggest that the sustainability of the immunizations is dependent on viral variability and that the memory lifetimes are not random, what contradicts what was suggested by Tarlinton et al. [Curr. Opin. Immunol. 20, 162 (2008)]. We show that what may cause an apparent random behavior of the immune memory is the antigenic variability.
Resumo:
Bose-Einstein correlations of charged kaons are used to probe Au+Au collisions at s(NN)=200 GeV and are compared to charged pion probes, which have a larger hadronic scattering cross section. Three-dimensional Gaussian source radii are extracted, along with a one-dimensional kaon emission source function. The centrality dependences of the three Gaussian radii are well described by a single linear function of N(part)(1/3) with a zero intercept. Imaging analysis shows a deviation from a Gaussian tail at r greater than or similar to 10 fm, although the bulk emission at lower radius is well described by a Gaussian. The presence of a non-Gaussian tail in the kaon source reaffirms that the particle emission region in a heavy-ion collision is extended, and that similar measurements with pions are not solely due to the decay of long-lived resonances.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Laser radiation at 1.06 µm from a pulsed Nd:YAG laser was focused onto a multielement YBa2Cu3O7 target in vacuum and the plasma thus generated was studied using time-resolved spectroscopic techniques. Line broadening of the Ba I emission line at 553.5 nm was monitored as a function of time elapsed after the incidence of a laser pulse on the target. Measured line profiles of barium species were used to infer the electron density and temperature, and the time evolution of these important plasma parameters has been worked out.
Resumo:
In order to characterise the laser ablation process from high-Tc superconductors, the time evolution of plasma produced by a Q-switching Nd:YAG laser from a GdBa2Cu3O7 superconducting sample has been studied using spectroscopic and ion-probe techniques. It has been observed that there is a fairly large delay for the onset of the emission from oxide species in comparison with those from atoms and ions of the constituent elements present in the plasma. Faster decay occurs for emission from oxides and ions compared with that from neutral atoms. These observations support the view that oxides are not directly produced from the target, but are formed by the recombination process while the plasma cools down. Plasma parameters such as temperature and velocity are also evaluated.
Resumo:
A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful information on the time-dependent biomass flux in the pelagic ecosystem.
Resumo:
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time-resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the system`s long time behavior and the thermalization limit is analyzed. Copyright (C) EPLA, 2011
Resumo:
The batch-operated bromate/phosphate/acetone/dual catalyst system was studied at four temperatures between 5 and 35 degrees C. The dynamics was simultaneously followed by potential measurements with platinum and bromide selective electrodes, and spectroscopically at two different wavelengths. By simultaneously recording these four time series it was possible to characterize the dynamics of the sequential oscillations that evolve in time. The existence of three sequential oscillatory patterns at each temperature allowed estimating the activation energies in each case. Along with the activation energy of the induction period, it was possible to trace the time evolution of the overall activation energy at four different stages as the reaction proceeds. The study was carried out for two different sets of initial concentrations and it was observed that the overall activation energy increases as reactants turn into products. This finding was propounded as a result of the decrease in the driving force, or the system`s affinity, of the catalytic oxidative bromination of acetone with acidic bromate, as the closed system evolves toward the thermodynamic equilibrium.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
Using the flexibility and constructive definition of the Schwinger bases, we developed different mapping procedures to enhance different aspects of the dynamics and of the symmetries of an extended version of the two-level Lipkin model. The classical limits of the dynamics are discussed in connection with the different mappings. Discrete Wigner functions are also calculated. © 1995.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.