988 resultados para thyroid parafollicular cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitory effect of supraphysiological iodide concentrations on thyroid hormone synthesis (Wolff - Chaikoff effect) and on thyrocyte proliferation is largely known as iodine autoregulation. However, the molecular mechanisms by which iodide modulates thyroid function remain unclear. In this paper, we analyze the transcriptome profile of the rat follicular cell lineage PCCl3 under untreated and treated conditions with 10 (- 3) M sodium iodide (NaI). Serial analysis of gene expression (SAGE) revealed 84 transcripts differentially expressed in response to iodide (p <= 0.001). We also showed that iodide excess inhibits the expression of essential genes for thyroid differentiation: Tshr, Nis, Tg, and Tpo. Relative expression of 14 of 20 transcripts selected by SAGE was confirmed by real-time PCR. Considering the key role of iodide organification in thyroid physiology, we also observed that both the oxidized form of iodide and iodide per se are responsible for gene expression modulation in response to iodide excess. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present work investigated the effect of prolonged administration of salmon calcitonin, a hormone secreted by parafollicular cells from thyroid, on behavioural parameters of rats. Animals received calcitonin sc, 100 mUI/100 g of body weight, three times a week, during 50 days. Behaviour was assessed utilizing an Open Field, Elevated Plus-Maze and Hole Board apparatus. Calcitonin treatment in rats seems to modify open field and elevated plus maze behaviour, suggesting emotionality and anxiety state alterations of the animals. These conditions can be provoked due to the direct calcitonin action on its receptors, even though we do not exclude an action mediated by tissue calcium level alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy and RET/PTC rearrangements represent key genetic events frequently associated to this cancer, enhancing proliferation and dedifferentiation by activation of the RET/PTC-RAS-BRAF-mitogen-activated protein kinase (MAPK) pathway. Recently, let-7 microRNA was found to reduce RAS levels in lung cancer, acting as a tumor suppressor gene. Here, we report that RET/PTC3 oncogenic activation in PCCL3 rat thyroid cells markedly reduces let-7f expression. Moreover, stable transfection of let-7 microRNA in TPC-1 cells, which harbor RET/PTC1 rearrangement, inhibits MAPK activation. As a result, let-7f was capable of reducing TPC-1 cell growth, and this might be explained, at least in part, by decreased messenger RNA (mRNA) expression of cell cycle stimulators such as MYC and CCND1 (cyclin D1) and increased P21 cell cycle inhibitor mRNA. In addition, let-7 enhanced transcriptional expression of molecular markers of thyroid differentiation such as TITF1 and TG. Thus, reduced expression of let-7f might be an essential molecular event in RET/PTC malignant transformation. Moreover, let-7f effects on thyroid growth and differentiation might attenuate neoplastic process of RET/PTC papillary thyroid oncogenesis through impairment of MAPK signaling pathway activation. This is the first functional demonstration of an association of let-7 with thyroid cancer cell growth and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of mitochondrial dysfunction in cancer has long been a subject of great interest. In this study, such dysfunction has been examined with regards to thyroid oncocytoma, a rare form of cancer, accounting for less than 5% of all thyroid cancers. A peculiar characteristic of thyroid oncocytic cells is the presence of an abnormally large number of mitochondria in the cytoplasm. Such mitochondrial hyperplasia has also been observed in cells derived from patients suffering from mitochondrial encephalomyopathies, where mutations in the mitochondrial DNA(mtDNA) encoding the respiratory complexes result in oxidative phosphorylation dysfunction. An increase in the number of mitochondria occurs in the latter in order to compensate for the respiratory deficiency. This fact spurred the investigation into the presence of analogous mutations in thyroid oncocytic cells. In this study, the only available cell model of thyroid oncocytoma was utilised, the XTC-1 cell line, established from an oncocytic thyroid metastasis to the breast. In order to assess the energetic efficiency of these cells, they were incubated in a medium lacking glucose and supplemented instead with galactose. When subjected to such conditions, glycolysis is effectively inhibited and the cells are forced to use the mitochondria for energy production. Cell viability experiments revealed that XTC-1 cells were unable to survive in galactose medium. This was in marked contrast to the TPC-1 control cell line, a thyroid tumour cell line which does not display the oncocytic phenotype. In agreement with these findings, subsequent experiments assessing the levels of cellular ATP over incubation time in galactose medium, showed a drastic and continual decrease in ATP levels only in the XTC-1 cell line. Furthermore, experiments on digitonin-permeabilised cells revealed that the respiratory dysfunction in the latter was due to a defect in complex I of the respiratory chain. Subsequent experiments using cybrids demonstrated that this defect could be attributed to the mitochondrially-encoded subunits of complex I as opposed to the nuclearencoded subunits. Confirmation came with mtDNA sequencing, which detected the presence of a novel mutation in the ND1 subunit of complex I. In addition, a mutation in the cytochrome b subunit of complex III of the respiratory chain was detected. The fact that XTC-1 cells are unable to survive when incubated in galactose medium is consistent with the fact that many cancers are largely dependent on glycolysis for energy production. Indeed, numerous studies have shown that glycolytic inhibitors are able to induce apoptosis in various cancer cell lines. Subsequent experiments were therefore performed in order to identify the mode of XTC-1 cell death when subjected to the metabolic stress imposed by the forced use of the mitochondria for energy production. Cell shrinkage and mitochondrial fragmentation were observed in the dying cells, which would indicate an apoptotic type of cell death. Analysis of additional parameters however revealed a lack of both DNA fragmentation and caspase activation, thus excluding a classical apoptotic type of cell death. Interestingly, cleavage of the actin component of the cytoskeleton was observed, implicating the action of proteases in this mode of cell demise. However, experiments employing protease inhibitors failed to identify the specific protease involved. It has been reported in the literature that overexpression of Bcl-2 is able to rescue cells presenting a respiratory deficiency. As the XTC-1 cell line is not only respiration-deficient but also exhibits a marked decrease in Bcl-2 expression, it is a perfect model with which to study the relationship between Bcl-2 and oxidative phosphorylation in respiratory-deficient cells. Contrary to the reported literature studies on various cell lines harbouring defects in the respiratory chain, Bcl-2 overexpression was not shown to increase cell survival or rescue the energetic dysfunction in XTC-1 cells. Interestingly however, it had a noticeable impact on cell adhesion and morphology. Whereas XTC-1 cells shrank and detached from the growth surface under conditions of metabolic stress, Bcl-2-overexpressing XTC-1 cells appeared much healthier and were up to 45% more adherent. The target of Bcl-2 in this setting appeared to be the actin cytoskeleton, as the cleavage observed in XTC-1 cells expressing only endogenous levels of Bcl-2, was inhibited in Bcl-2-overexpressing cells. Thus, although unable to rescue XTC-1 cells in terms of cell viability, Bcl-2 is somehow able to stabilise the cytoskeleton, resulting in modifications in cell morphology and adhesion. The mitochondrial respiratory deficiency observed in cancer cells is thought not only to cause an increased dependency on glycolysis but it is also thought to blunt cellular responses to anticancer agents. The effects of several therapeutic agents were thus assessed for their death-inducing ability in XTC-1 cells. Cell viability experiments clearly showed that the cells were more resistant to stimuli which generate reactive oxygen species (tert-butylhydroperoxide) and to mitochondrial calcium-mediated apoptotic stimuli (C6-ceramide), as opposed to stimuli inflicting DNA damage (cisplatin) and damage to protein kinases(staurosporine). Various studies in the literature have reported that the peroxisome proliferator-activated receptor-coactivator 1(PGC-1α), which plays a fundamental role in mitochondrial biogenesis, is also involved in protecting cells against apoptosis caused by the former two types of stimuli. In accordance with these observations, real-time PCR experiments showed that XTC-1 cells express higher mRNA levels of this coactivator than do the control cells, implicating its importance in drug resistance. In conclusion, this study has revealed that XTC-1 cells, like many cancer cell lines, are characterised by a reduced energetic efficiency due to mitochondrial dysfunction. Said dysfunction has been attributed to mutations in respiratory genes encoded by the mitochondrial genome. Although the mechanism of cell demise in conditions of metabolic stress is unclear, the potential of targeting thyroid oncocytic cancers using glycolytic inhibitors has been illustrated. In addition, the discovery of mtDNA mutations in XTC-1 cells has enabled the use of this cell line as a model with which to study the relationship between Bcl-2 overexpression and oxidative phosphorylation in cells harbouring mtDNA mutations and also to investigate the significance of such mutations in establishing resistance to apoptotic stimuli.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myosin-Va is a Ca 2+/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat. © 2008 Springer-Verlag.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cysteine peptidase cathepsin B is important in thyroid physiology by being involved in thyroid prohormone processing initiated in the follicular lumen and completed in endo-lysosomal compartments. However, cathepsin B has also been localized to the extrafollicular space and is therefore suggested to promote invasiveness and metastasis in thyroid carcinomas through, e.g., ECM degradation. In this study, immunofluorescence and biochemical data from subcellular fractionation revealed that cathepsin B, in its single- and two-chain forms, is localized to endo-lysosomes in the papillary thyroid carcinoma cell line KTC-1 and in the anaplastic thyroid carcinoma cell lines HTh7 and HTh74. This distribution is not affected by thyroid stimulating hormone (TSH) incubation of HTh74, the only cell line that expresses a functional TSH-receptor. Immunofluorescence data disclosed an additional nuclear localization of cathepsin B immunoreactivity. This was supported by biochemical data showing a proteolytically active variant slightly smaller than the cathepsin B proform in nuclear fractions. We also demonstrate that immunoreactions specific for cathepsin V, but not cathepsin L, are localized to the nucleus in HTh74 in peri-nucleolar patterns. As deduced from co-localization studies and in vitro degradation assays, we suggest that nuclear variants of cathepsins are involved in the development of thyroid malignancies through modification of DNA-associated proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While incretins are of great interest for the therapy of diabetes 2, the focus has recently been brought to the thyroid, since rodents treated with glucagon-like peptide-1 (GLP-1) analogs were found to occasionally develop medullary thyroid carcinomas. Incretin receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) were therefore measured in various rodent and human thyroid conditions. In vitro GLP-1 and GIP receptor autoradiography were performed in normal thyroids, C-cell hyperplasia and medullary thyroid carcinomas in rodents. Receptor incidence and density were assessed and compared with the receptor expression in human thyroids, medullary thyroid carcinomas, and TT cells. GLP-1 receptors are expressed in C cells of normal rat and mice thyroids. Their density is markedly increased in rat C-cell hyperplasia and medullary thyroid carcinomas, where their incidence amounts to 100%. GIP receptors are neither detected in normal rodent thyroids nor in C-cell hyperplasia, but are present in all rat medullary thyroid carcinomas. No GLP-1 or GIP receptors are detected in normal human thyroids. Whereas only 27% of all human medullary thyroid carcinomas express GLP-1 receptors, up to 89% express GIP receptors in a high density. TT cells lack GLP-1 receptors but express GIP receptors. GLP-1 receptors are frequently expressed in non-neoplastic and neoplastic C cells in rodents while they are rarely detected in human C-cell neoplasia, suggesting species differences. Conversely, GIP receptors appear to be massively overexpressed in neoplastic C cells in both species. The presence of incretin receptors in thyroid C cell lesions suggests that this organ should be monitored before and during incretin-based therapy of diabetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, we have demonstrated that the preproghrelin derived hormones, ghrelin and obestatin, may play a role in ovarian cancer. Ghrelin and obestatin stimulated an increase in cell migration in ovarian cancer cell lines and may play a role in cancer progression. Ovarian cancer is the leading cause of death among gynaecological cancers and is the sixth most common cause of cancer-related deaths in women in developed countries. As ovarian cancer is difficult to diagnose at a low tumour grade, two thirds of ovarian cancers are not diagnosed until the late stages of cancer development resulting in a poor prognosis for the patient. As a result, current treatment methods are limited and not ideal. There is an urgent need for improved diagnostic markers, as well better therapeutic approaches and adjunctive therapies for this disease. Ghrelin has a number of important physiological effects, including roles in appetite regulation and the stimulation of growth hormone release. It is also involved in regulating the immune, cardiovascular and reproductive systems and regulates sleep, memory and anxiety, and energy metabolism. Over the last decade, the ghrelin axis, (which includes the hormones ghrelin and obestatin and their receptors), has been implicated in the pathogenesis of many human diseases and it may t may also play an important role in the development of cancer. Ghrelin is a 28 amino acid peptide hormone that exists in two forms. Acyl ghrelin (usually referred to as ghrelin), has a unique n-octanoic acid post-translational modification (which is catalysed by ghrelin O-acyltransferase, GOAT), and desacyl ghrelin, which is a non-octanoylated form. Octanoylated ghrelin acts through the growth hormone secretagogue receptor type 1a (GHSR1a). GHSR1b, an alternatively spliced isoform of GHSR, is C-terminally truncated and does not bind ghrelin. Ghrelin has been implicated in the pathophysiology of a number of diseases Obestatin is a 23 amino acid, C-terminally amidated peptide which is derived from preproghrelin. Although GPR39 was originally thought to be the obestatin receptor this has been disproven, and its receptor remains unknown. Obestatin may have as diverse range of roles as ghrelin. Obestatin improves memory, inhibits thirst and anxiety, increases pancreatic juice secretion and has cardioprotective effects. Obestatin also has been shown to regulate cell proliferation, differentiation and apoptosis in some cell types. Prior to this study, little was known regarding the functions and mechanisms of action ghrelin and obestatin in ovarian cancer. In this study it was demonstrated that the full length ghrelin, GHSR1b and GOAT mRNA transcripts were expressed in all of the ovarian-derived cell lines examined (SKOV3, OV-MZ-6 and hOSE 17.1), however, these cell lines did not express GHSR1a. Ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for ghrelin, obestatin, and GOAT, but not GHSR1a, or GHSR1b. No correlations between cancer grade and the level of expression of these transcripts were observed. This study demonstrated for the first time that both ghrelin and obestatin increase cell migration in ovarian cancer cell lines. Treatment with ghrelin (for 72 hours) significantly increased cell migration in the SKOV3 and OV-MZ-6 ovarian cancer cell lines. Ghrelin (100 nM) stimulated cell migration in the SKOV3 (2.64 +/- 1.08 fold, p <0.05) and OV-MZ-6 (1.65 +/- 0.31 fold, p <0.05) ovarian cancer cell lines, but not in the representative normal cell line hOSE 17.1. This increase in migration was not accompanied by an increase in cell invasion through Matrigel. In contrast to other cancer types, ghrelin had no effect on proliferation. Ghrelin treatment (10nM) significantly decreased attachment of the SKOV3 ovarian cancer cell line to collagen IV (24.7 +/- 10.0 %, p <0.05), however, there were no changes in attachment to the other extracellular matrix molecules (ECM) tested (fibronectin, vitronectin and collagen I), and there were no changes in attachment to any of the ECM molecules in the OV-MZ-6 or hOSE 17.1 cell lines. It is, therefore, unclear if ghrelin plays a role in cell attachment in ovarian cancer. As ghrelin has previously been demonstrated to signal through the ERK1/2 pathway in cancer, we investigated ERK1/2 signalling in ovarian cancer cell lines. In the SKOV3 ovarian cancer cell line, a reduction in ERK1/2 phosphorylation (0.58 fold +/- 0.23, p <0.05) in response to 100 nM ghrelin treatment was observed, while no significant change in ERK1/2 signalling was seen in the OV-MZ-6 cell line with treatment. This suggests that this pathway is unlikely to be involved in mediating the increased migration seen in the ovarian cancer cell lines with ghrelin treatment. In this study ovarian cancer tissue of varying stages and normal ovarian tissue expressed the coding region for obestatin, however, no correlation between cancer grade and level of obestatin transcript expression was observed. In the ovarian-derived cell lines studied (SKOV3, OV-MZ-6 and hOSE 17.1) it was demonstrated that the full length preproghrelin mRNA transcripts were expressed in all cell lines, suggesting they have the ability to produce mature obestatin. This is the first study to demonstrate that obestatin stimulates cell migration and cell invasion. Obestatin induced a significant increase in migration in the SKOV3 ovarian cancer cell line with 10 nM (2.80 +/- 0.52 fold, p <0.05) and 100 nM treatments (3.12 +/- 0.68 fold, p <0.05) and in the OV-MZ-6 cancer cell line with 10 nM (2.04 +/- 0.10 fold, p <0.01) and 100 nM treatments (2.00 +/- 0.37 fold, p <0.05). Obestatin treatment did no affect cell migration in the hOSE 17.1normal ovarian epithelial cell line. Obestatin treatment (100 nM) also stimulated a significant increase in cell invasion in the OV-MZ-6 ovarian cancer cell line (1.45 fold +/- 0.13, p <0.05) and in the hOSE17.1 normal ovarian cell line cells (1.40 fold +/- 0.04 and 1.55 fold +/- 0.05 respectively, p <0.01) with 10 nM and 100 nM treatments. Obestatin treatment did not stimulate cell invasion in the SKOV3 ovarian cancer cell line. This lack of obestatin-stimulated invasion in the SKOV3 cell line may be a cell line specific result. In this study, obestatin did not stimulate cell proliferation in the ovarian cell lines and it has previously been shown to have no effect on cell proliferation in the BON-1 pancreatic neuroendocrine and GC rat somatotroph tumour cell lines. In contrast, obestatin has been shown to affect cell proliferation in gastric and thyroid cancer cell lines, and in some normal cell lines. Obestatin also had no effect on attachment of any of the cell lines to any of the ECM components tested (fibronectin, vitronectin, collagen I and collagen IV). The mechanism of action of obestatin was investigated further using a two dimensional-difference in gel electrophoresis (2D-DIGE) proteomic approach. After treatment with obestating (0, 10 and 100 nM), SKOV3 ovarian cancer and hOSE 17.1 normal ovarian cell lines were collected and 2D-DIGE analysis and mass spectrometry were performed to identify proteins that were differentially expressed in response to treatment. Twenty-six differentially expressed proteins were identified and analysed using Ingenuity Pathway Analysis (IPA). This linked 16 of these proteins in a network. The analysis suggested that the ERK1/2 MAPK pathway was a major mediator of obestatin action. ERK1/2 has previously been shown to be associated with obestatin-stimulated cell proliferation and with the anti-apoptotic effects of obestatin. Activation of the ERK1/2 signalling pathway by obestatin was, therefore, investigated in the SKOV3 and OV-MZ-6 ovarian cancer cell lines using anti-active antibodies and Western immunoblots. Obestatin treatment significantly decreased ERK1/2 phosphorylation at higher obestatin concentrations in both the SKOV3 (100 nM and 1000 nM) and OV-MZ-6 (1000 nM) cell lines compared to the untreated controls. Currently, very little is known about obestatin signalling in cancer. This thesis has demonstrated for the first time that the ghrelin axis may play a role in ovarian cancer migration. Ghrelin and obestatin increased cell migration in ovarian cancer cell lines, indicating that they may be a useful target for therapies that reduce ovarian cancer progression. Further studies investigating the role of the ghrelin axis using in vivo ovarian cancer metastasis models are warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The commitment of cells to replicate and divide correlates with the activation of cyclin-dependent kinases and the inactivation of Rb, the product of the retinoblastoma tumor suppressor gene. Rb is a target of the cyclin-dependent kinases and, when phosphorylated, is inactivated. Biochemical studies exploring the nature of the relationship between cyclin-dependent kinase inhibitors and Rb have supported the hypothesis that these proteins are on a linear pathway regulating commitment. We have been able to study this relationship by genetic means by examining the phenotype of Rb+/−p27−/− mice. Tumors arise from the intermediate lobe cells of the pituitary gland in p27−/− mice, as well as in Rb+/− mice after loss of the remaining wild-type allele of Rb. Using these mouse models, we examined the genetic interaction between Rb and p27. We found that the development of pituitary tumors in Rb+/− mice correlated with a reduction in p27 mRNA and protein expression. To determine whether the loss of p27 was an indirect consequence of tumor formation or a contributing factor to the development of this tumor, we analyzed the phenotype of Rb+/−p27−/− mice. We found that these mice developed pituitary adenocarcinoma with loss of the remaining wild-type allele of Rb and a high-grade thyroid C cell carcinoma that was more aggressive than the disease in either Rb+/− or p27−/− mice. Importantly, we detected both pituitary and thyroid tumors earlier in the Rb+/−p27−/− mice. We therefore propose that Rb and p27 cooperate to suppress tumor development by integrating different regulatory signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The regular doubling of cell mass, and therefore of cell protein content, is required for repetitive cell divisions. Preliminary observations have shown that in dog thyrocytes insulin induces protein accumulation but not DNA synthesis, while TSH does not increase protein accumulation but triggers DNA synthesis in the presence of insulin. We show here that EGF and phorbol myristate ester complement insulin action in the same way. HGF is the only factor activating both protein accumulation and DNA synthesis. The effects of insulin on protein accumulation and in permitting the TSH effect are reproduced by IGF-1 and are mediated, at least in part by the IGF-1 receptor. The concentration effect curves are similar for both effects. Similar results are obtained in human thyrocytes. They reflect true cell growth, as shown by increases in RNA content and cell size. Carbachol and fetal calf serum also stimulate protein synthesis and accumulation without triggering DNA synthesis, but they are not permissive for the mitogenic effects of TSH or of the general adenylate cyclase activator, forskolin. Moreover the mitogenic effect of TSH greatly decreased in cells deprived of insulin for 2 days although these cells remain hypertrophic. Hypertrophy may therefore be necessary for cell division, but it is not sufficient to permit it. Three different mechanisms can therefore be distinguished in the mitogenic action of TSH: (1) the increase of cell mass (hypertrophy) induced by insulin or IGF-1; (2) the permissive effect of insulin or IGF-1 on the mitogenic effect of TSH which may involve both the increase of cell mass and the induction of specific proteins such as cyclin D3 and (3) the mitogenic effect of the TSH cyclic AMP cascade proper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To measure thyroid cell proliferation in patients with Graves' disease (GD) before and during treatment with antithyroid drugs.STUDY DESIGN: Patients were assessed by fine needle aspiration biopsy before (n=20) and after 4 (n=19) and 12 months of treatment (n=15) with propylthiouracil or methimazole. Cell proliferation index (CPI) was estimated by immunocytochemistry using MIB-1. CPI was studied in relation to the cytologic parameters of the smears; clinical parameters, such as Wayne's Clinical Index (WCI) and time without treatment; laboratory parameters, such as (131)Iuptake and dosage of serum free thyroxin and thyroid-stimulating hormone; and thyroid ultrasound.RESULTS: CPI varied from 0.00% to 25.00% before treatment, 0.00% to 23.00% at 4 months and 0.00% to 14.84% at 12 months. CPI median values were 6.50%, 4.30% and 3.30%, respectively (before and after 4 months and 12 months of treatment). CPI had a positive correlation with WCI and FT4 at 12 months of treatment.CONCLUSION: Thyroid CPI in GD varies from case to case. However, due to its decreasing pattern during follow-up and its positive correlation with thyrotoxicosis severity, CPI may indicate the functional status of the gland and contribute to a better understanding of GD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)