922 resultados para three stages of stress relaxation
Resumo:
Stress relaxation is relevant to the design of both civil and mining excavations. While many authors refer to the adverse effect of stress relaxation on excavation stability, some present compelling empirical evidence indicating that stress relaxation does not have a significant effect. Establishing clear definitions of stress relaxation was critical to understanding and quantifying stress relaxation of the various types that have been referred to in the literature. This paper defines three types of stress relaxation – partial relaxation, full relaxation and tangential relaxation. Once clear definitions were determined, it became clear that the theoretical arguments and empirical evidence presented by various authors to support their respective cases are not contradictory; rather, the different conclusions can be attributed to different types of stress relaxation. In particular, when the minor principal stress is negative the intermediate principal stress has been identified as significantly affecting jointed rock mass behaviour. The aim of the study was to review and evaluate existing methods of quantifying the effect of stress relaxation around underground excavations and, if necessary, propose a new set of recommendations. An empirical stope stability model, that has been termed the Extended Mathews stability chart, was considered to be the most appropriate method of quantifying the effects of stress relaxation. A new set of guidelines to account for the effect of stress relaxation on excavation stability in the Extended Mathews stability chart has been proposed from a back-analysis of 55 case histories of stress relaxation.
Resumo:
Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study we examine the influence of different ripening stages of two mango Mangifera indica L. (Anacardiaceae) varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. Work was carried out as a series of laboratory-based choice and no-choice oviposition experiments and larval growth trials. In oviposition choice trials, female B. dorsalis demonstrated a preference for ripe fruit of mango variety Namdorkmai over variety Oakrong, but generally the dependent variable most influencing oviposition results was fruit ripening stage. Ripe and fully-ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully-ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in Total Soluble Solids, TSS, and skin toughness correlate with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of our experimental fruit. Larval survival was also often poor. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.
Resumo:
Advancing maize crop maturity is associated with changes in ear-to-stover ratio which may have consequences for the digestibility of the ensiled crop. The apparent digestibility and nitrogen retention of three diets (Early, Mid and Late) containing maize silages made from maize of advancing harvest date [dry matter (DM) contents of the maize silages were 273, 314 and 367 g kg(-1) for the silages in the Early, Mid and Late diets respectively], together with a protein supplement offered in sufficient quantities to make the diets isonitrogenous, were measured in six Holstein-Friesian steers in an incomplete Latin square design with four periods. Dry-matter intake of maize silage tended to be least for the Early diet and greatest for the Medium diet (P=0(.)182). Apparent digestibility of DM and organic matter did not differ between diets. Apparent digestibility of energy was lowest in the Late diet (P = 0(.)057) and the metabolizable energy concentrations of the three silages were calculated as 11(.)0, 11(.)1 and 10(.)6 MJ kg(-1) DM for the Early, Medium and Late diets respectively (P = 0(.)068). No differences were detected between diets in starch digestibility but the number of undamaged grains present in the faeces of animals fed the Late diet was significantly higher than with the Early and Mid diets (P = 0(.)006). The apparent digestibility of neutral-detergent fibre of the diets reduced significantly as silage DM content increased (P = 0(.)012) with a similar trend for the apparent digestibility of acid-detergent fibre (P = 0(.)078). Apparent digestibility of nitrogen (N) was similar for the Early and Mid diets, both being greater than the Late diet (P = 0(.)035). Nitrogen retention did not differ between diets. It was concluded that delaying harvest until the DM content is above 300 g kg(-1) can negatively affect the nutritive value of maize silage in the UK.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Máster Oceanografía Biológica. Primera Tesis de Máster con resultados de la Campaña de Circunnavegación Malaspina 2010
Resumo:
The formulation of a geotechnical model and the associated prediction of the mechanical behaviour is a challenge engineers need to overcome in order to optimize tunnel design and meet project requirements. Special challenges arise in cases where rocks and rockmasses are susceptible to time-effects and time-dependent processes govern. Progressive rockmass deformation and instability, time-dependent overloading of support and delayed failures are commonly the result of time-dependent phenomena. The research work presented in this thesis serves as an attempt to provide more insight into the time-dependent behaviour of rocks. Emphasis is given on investigating and analyzing creep deformation and time-dependent stress relaxation phenomenon at the laboratory scale and in-depth analyses are presented. This thesis further develops the understanding of these phenomena and practical yet scientific tools for estimating and predicting the long-term strength and the maximum stress relaxation of rock materials are proposed. The identification of the existence of three distinct behavioural stages during stress relaxation is presented and discussed. The main observations associated with time-dependent behaviour are employed in numerical analyses and applied at the tunnel scale. A new approach for simulating and capturing the time-dependent behaviour coupled with the tunnel advancement effect is also developed and analyzed. Guidance is provided to increase the understanding of the support-rockmass interaction and the main implications and significance of time-dependent behaviour associated with rock tunnelling are discussed. The work presented in this thesis advances the scientific understanding of time-dependent rock and rockmass behaviour, increases the awareness of how such phenomena are captured numerically, and lays out a framework for dealing with such deformations when predicting tunnel deformations. Practical aspects of this thesis are also presented, which will increase their usage in the associated industries and close the gap between the scientific and industry communities.
Resumo:
According to stress relaxation curves of phenolphthalein poly(ether ketone) (PEK-C) at different temperatures and the principle of time-temperature equivalence, the master curves of PEK-C at arbitrary reference temperatures are obtained. A coupling model (Kohlrausch-Williams-Watts) is applied to explain quantitatively the different temperature dependence of stress relaxation behavior and the relationship between stress relaxation and yield phenomenon is established through the coupling model.
Resumo:
Background: Despite improvements in child health, malnutrition still remains one of the main public health challenges in Iran. Objectives: The aim of this study was to compare under nutrition among under-five children with regard to ethnicity in rural area in north Iran. Patients and Methods: In three cross-sectional studies 7575 subjects in three time-periods including 2339 children in 1998, 2749 in 2004, and 2487 in 2013, were evaluated. All under-five-children in 20 out of 118 villages were chosen by random sampling and assessed. Under nutrition was defined as underweight, stunting and wasting lower than -2 SD (Z < -2 SD). Results: Generally, stunting was declined 17.1% and underweight and wasting were increased 0.9% and 1%, respectively during 15 years (1998 - 2013). Underweight increased 0.5% in Fars-natives and 3.2% in Turkmans and it was decreased 0.9% in Sistanis. Statistical difference in Turkman children among the three stages of the study was significant (P = 0.001). Stunting has decreased 28.7% in Fars-natives and 35.1% in Sistanis, it was increased 9.3% in Turkman group. Statistical differences among three stages in inter-ethnic groups were significant (P = 0.001 for all). Compared the group with good economic status, the odds ratio was 1.831 in poor economic group (P = 0.001). The risk of under nutrition in Sistanis was 1.754 times more than in Fars-natives (P = 0.001). Conclusions: Under nutrition remains one of the main health problems in under-five-year children in north Iran being more common in Sistani children. Stunting in Sistani children deeply decreased while in Turkman children slightly increased during the 15-year period study. Poor economic status is a risk factor for under nutrition in this area.
Resumo:
How do organizations previously dominated by the state develop dynamic capabilities that would support their growth in a competitive market economy? We develop a theoretical framework of organizational transformation that explains the processes by which organizations learn and develop dynamic capabilities in transition economies. Specifically, the framework theorizes about the importance of, and inter-relationships between, leadership, organizational learning, dynamic capabilities, and performance over three stages of transformation. Propositions derived from this framework explain the pre-conditions enabling organizational learning, the linkages between types of learning and functions of dynamic capabilities, and the feedback from dynamic capabilities to organizational learning that allows firms in transition economies to regain their footing and build long-term competitive advantage. We focus on transition contexts, where these processes have been magnified and thus offer new insights into strategizing in radically altered environments.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
Polypropylene sheets have been stretched at 160 °C to a state of large biaxial strain of extension ratio 3, and the stresses then allowed to relax at constant strain. The state of strain is reached via a path consisting of two sequential planar extensions, the second perpendicular to the first, under plane stress conditions with zero stress acting normal to the sheet. This strain path is highly relevant to solid phase deformation processes such as stretch blow moulding and thermoforming, and also reveals fundamental aspects of the flow rule required in the constitutive behaviour of the material. The rate of decay of stress is rapid, and such as to be highly significant in the modelling of processes that include stages of constant strain. A constitutive equation is developed that includes Eyring processes to model both the stress relaxation and strain rate dependence of the stress. The axial and transverse stresses observed during loading show that the use of a conventional Levy-Mises flow rule is ineffective, and instead a flow rule is used that takes account of the anisotropic state of the material via a power law function of the principal extension ratios. Finally the constitutive model is demonstrated to give quantitatively useful representation of the stresses both in loading and in stress relaxation.
Resumo:
Expression of connective tissue growth factor (CTGF), a member of the CCN gene family, is known to be significantly induced by mechanical stress. We have therefore investigated whether other members of the CCN gene family, including Cyr61 and Nov, might reveal a similar stress-dependent regulation. Fibroblasts growing under stressed conditions within a three-dimensional collagen gel showed at least a 15 times higher level of Cyr61 mRNA than cells growing under relaxed conditions. Upon relaxation, the decline of the Cyr61 mRNA to a lower level occurred within 2 h, and was thus quicker than the response of CTGF. The regulation was fully reversible when stress was reapplied. Thus, Cyr61 represents another typical example of a stress-responsive gene. The level of the Nov mRNA was low in the stressed state, but increased in the relaxed state. This CCN gene therefore shows an inverted regulation relative to that of Cyr61 and CTGF. Inhibition of protein kinases by means of staurosporine suppressed the stress-induced expression of Cyr61 and CTGF. Elevated levels of cAMP induced by forskolin mimicked the effects of relaxation on the regulation of Cyr61, CTGF and Nov. Thus, adenylate cyclase as well as one or several protein kinases might be involved in the mechanoregulation of these CCN genes.
Resumo:
The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests
Resumo:
BACKGROUND Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. AIM To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. METHODS Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. RESULTS Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2U/ml higher (p<0.001) at 10min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). CONCLUSION Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost.