974 resultados para thorax pressure
Resumo:
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (VLr) and maximal lung volume (VLm) when compared with tegus with intact PHS. Standardised for body mass (MB), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have designed, built, and tested an early prototype of a novel subxiphoid access system intended to facilitate epicardial electrophysiology, but with possible applications elsewhere in the body. The present version of the system consists of a commercially available insertion needle, a miniature pressure sensor and interconnect tubing, read-out electronics to monitor the pressures measured during the access procedure, and a host computer with user-interface software. The nominal resolution of the system is <0.1 mmHg, and it has deviations from linearity of <1%. During a pilot series of human clinical studies with this system, as well as in an auxiliary study done with an independent method, we observed that the pericardial space contained pressure-frequency components related to both the heart rate and respiratory rate, while the thorax contained components related only to the respiratory rate, a previously unobserved finding that could facilitate access to the pericardial space. We present and discuss the design principles, details of construction, and performance characteristics of this system.
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.
Resumo:
This study compared pressure and thermal thresholds after administration of three opioids in eight cats. Pressure stimulation was performed via a bracelet taped around the forearm. Three ball-bearings were advanced against the forearm by inflation of a modified blood pressure bladder. Pressure in the cuff was recorded at the end point (leg shake and head turn). Thermal threshold was tested as previously reported using a heated probe held against the thorax [Dixon et al. (2002) Research in Veterinary Science, 72, 205]. After baseline recordings, each cat received subcutaneous methadone 0.2 mg/kg, morphine 0.2 mg/kg, buprenorphine 0.02 mg/kg or saline 0.3 mL in a four period cross-over study. Measurements were made at 15, 30, 45 min and 1, 2, 3, 4, 8, 12 and 24 h after the injection. Data were analysed by ANOVA (P < 0.05). There were no significant changes in thresholds after saline. Thermal threshold increased at 45 min after buprenorphine (maximum 2.8 +/- 3 degrees C), 1-3 h after methadone (maximum 3.4 +/- 1.9 degrees C) and 45 min to 1 h (maximum 3.4 +/- 2 degrees C) after morphine. Pressure threshold increased 30-45 min (maximum 238 +/- 206 mmHg) after buprenorphine, 45-60 min after methadone (maximum 255 +/- 232 mmHg) and 45-60 min and 3-6 h (maximum 255 +/- 232 mmHg) after morphine. Morphine provided the best analgesia, and methadone appears a promising alternative. Buprenorphines limited effect was probably related to the subcutaneous route of administration. Previously, buprenorphine has produced much greater effects when given by other routes.
Resumo:
Assessment of central blood pressure (BP) has grown substantially over recent years because evidence has shown that central BP is more relevant to cardiovascular outcomes than peripheral BP. Thus, different classes of antihypertensive drugs have different effects on central BP despite similar reductions in brachial BP. The aim of this study was to investigate the effect of nebivolol, a β-blocker with vasodilator properties, on the biochemical and hemodynamic parameters of hypertensive patients. Experimental single cohort study conducted in the outpatient clinic of a university hospital. Twenty-six patients were recruited. All of them underwent biochemical and hemodynamic evaluation (BP, heart rate (HR), central BP and augmentation index) before and after 3 months of using nebivolol. 88.5% of the patients were male; their mean age was 49.7 ± 9.3 years and most of them were overweight (29.6 ± 3.1 kg/m2) with large abdominal waist (102.1 ± 7.2 cm). There were significant decreases in peripheral systolic BP (P = 0.0020), diastolic BP (P = 0.0049), HR (P < 0.0001) and central BP (129.9 ± 12.3 versus 122.3 ± 10.3 mmHg; P = 0.0083) after treatment, in comparison with the baseline values. There was no statistical difference in the augmentation index or in the biochemical parameters, from before to after the treatment. Nebivolol use seems to be associated with significant reduction of central BP in stage I hypertensive patients, in addition to reductions in brachial systolic and diastolic BP.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Up to 20% of women with hypertensive pregnancy disorders might persist with chronic hypertension. This study compared clinical and echocardiographic features between women whose hypertension began as hypertensive pregnancy disorders (PH group) and women whose diagnosis of hypertension did not occur during pregnancy (NPH group). Fifty PH and 100 NPH women were cross-sectionally evaluated by clinical, laboratory, and echocardiography analysis, and the groups were matched by duration of hypertension. PH exhibited lower age (46.6 ± 1.4 vs. 65.3 ± 1.1 years; P < .001), but higher systolic (159.8 ± 3.9 vs. 148.0 ± 2.5 mm Hg; P = .009) and diastolic (97.1 ± 2.4 vs. 80.9 ± 1.3 mm Hg; P < .001) blood pressure than NPH, although used more antihypertensive classes (3.4 ± 0.2 vs. 2.6 ± 0.1; P < .001). Furthermore, PH showed higher left ventricular wall thickness and increased prevalence of concentric hypertrophy than NPH after adjusting for age and blood pressure. In conclusion, this study showed that PH may exhibit worse blood pressure control and adverse left ventricular remodeling compared with NPH.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.
Resumo:
CONTEXT: Intestinal constipation - a common symptom among the general population - is more frequent in women. It may be secondary to an improper diet or organic or functional disturbances, such as dyskinesia of the pelvic floor. This is basically characterized by the absence of relaxation or paradoxical contraction of the pelvic floor and anal sphincter during evacuation. OBJECTIVE: To analyze, by manometric data, the anal pressure variation at rest, during evacuation effort by using the Valsalva maneuver and forced post-expiratory apnea in subjects with secondary constipation. METHODS: Twenty-one patients (19 females - 90.4%) with a mean age of 47.5 years old (23-72) were studied. The diagnosis was performed using anorectal manometry, with a catheter containing eight channels disposed at the axial axis, measuring the proximal (1) and distal (2) portions of the anal orifice. The elevation of the pressure values in relation to the resting with the evacuation effort was present in all patients. The Agachan score was used for clinical evaluation of constipation. The variables studied were: mean anal pressure of the anal orifice for 20 seconds at rest, the effort of evacuation using Valsalva maneuver and the effort of evacuation during apnea after forced expiration, as well as the area under the curve of the manometric tracing at moments Valsalva and apnea. RESULTS: The analysis of the mean values of the anal pressure variation at rest evidenced difference between proximal and distal channels (P = 0.007), independent of the moment and tendency to differ during moments Valsalva and apnea (P = 0.06). The mean of values of the area under the manometric tracing curve showed differences between moments Valsalva and apnea (P = 0.0008), either at the proximal portion or at the distal portion of the anal orifice. CONCLUSION: The effort of evacuation associated with postexpiratory apnea, when compared with the effort associated with the Valsalva maneuver, provides lower elevation of anal pressure at rest by the parameter area under the curve.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure simulation on the bonding effectiveness of etch & rinse and self-etch adhesives to dentin. Eighty sound human molars were distributed into eight groups, according to the permeability level of each sample, measured by an apparatus to assess hydraulic conductance (Lp). Thus, a similar mean permeability was achieved in each group. Three etch & rinse adhesives (Prime & Bond NT - PB, Single Bond -SB, and Excite - EX) and one self-etch system (Clearfil SE Bond - SE) were employed, varying the presence or absence of an intrapulpal pressure (IPP) simulation of 15 cmH2O. After adhesive and restorative procedures were carried out, the samples were stored in distilled water for 24 hours at 37°C, and taken for tensile bond strength (TBS) testing. Fracture analysis was performed using a light microscope at 40 X magnification. The data, obtained in MPa, were then submitted to the Kruskal-Wallis test ( a = 0.05). The results revealed that the TBS of SB and EX was significantly reduced under IPP simulation, differing from the TBS of PB and SE. Moreover, SE obtained the highest bond strength values in the presence of IPP. It could be concluded that IPP simulation can influence the bond strength of certain adhesive systems to dentin and should be considered when in vitro studies are conducted.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Background & aims.This study examined the relationship between birthweight and blood pressure in childhood. Methods.Prospective cohort study involving 472 Brazilian children ranging in age from 5 to 8 years. Birthweight, systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), total cholesterol and fractions (LDL-c, HDL-c), and triglycerides were determined. Total cholesterol, LDL-c, HDL-c, and triglycerides were assessed by automated enzymatic methods. Blood pressure was measured with the HDI/Pulse Wave™ CR-2000 equipment. Multiple regression models were used to investigate the relationship between birthweight and SBP and DBP, controlling for the following variables: gender, age, BMI, total cholesterol, triglycerides, per capita income, and maternal education. Results.When adjusting for gender and BMI, we found a systolic blood pressure increase of 2.9 (95per cent CI = −5.33 to −0.56) mmHg per kilogram birthweight reduction. The unadjusted association was insignificant. Conclusion.Our data suggest that low birthweight is one of the factors contributing to blood pressure elevation at early ages. A way to prevent these diseases is by implementing public policies focused on good nutrition and adequate prenatal care for pregnant women
Resumo:
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed.