289 resultados para thiophene hydrodesulfurization


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of unsupported dimolybdenum nitride (gamma-Mo(2)N) catalysts differing in surface area were prepared by temperature programmed reduction of MoO(3) with a mixture of NH(3):N(2) (90:10). Characterization of catalysts by BET, XRD, TPR and XPS techniques was carried out. The samples were used as catalysts in hydrotreating reactions (simultaneous hydrodesulfurization of thiophene and hydrogenation of cyclohexene). Low surface area gamma-Mo(2)N materials show much higher specific conversions than those with higher surface area. These results indicate that HDS and HYD reactions over gamma-Mo(2)N seem to be structure-sensitive. The relative exposure extent of crystalline planes (111) and (200) over the different catalysts can be associated with their hydrogen adsorption capacities and with their catalytic performances. The catalytic activities are significantly affected by the catalyst pretreatment conditions. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tetralin hydrogenation (HYD) and thiophene hydrodesulfurization (HDS) were studied for the supported MoS2 and WS2 sulfides, either non-promoted or promoted with Co and Ni. The supports used were ZrO2, alumina-stabilized TiO2 and pure alumina. Preparation of catalysts included presulfidation of non-promoted system with subsequent addition of promoter and resulfidation. It has been found that the nature of promoter plays determining role for the catalytic performance. The most active in both HYD and HDS reactions are Ni-promoted Mo and W catalysts, supported on ZrO2. (C) 2003 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium oxide is a good candidate as new support for hydrotreating (HDT) catalysts, but has the inconvenience of presenting small surface area and poor thermal stability. To overcome these handicaps TiO2-Al2O3 mixed oxides were proposed as catalyst support. Here, the results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal complexing ratios [acac]/[Ti] and of sol aging temperature on the structural features of nanometric particles was analyzed by quasi-elastic light scattering (QELS) and N-2 adsorption isotherm measurements. These characterizations have shown that the addition of acac and the increase of aging temperature favor the full dispersion of primary nanoparticles in mother acid solution. The dried powder presents a monomodal distribution of slit-shaped micropores, formed by irregular packing of platelet primary particles, surface area superior to 200 m(2) g(-1) and mean pore size of about 1 nm. These characteristics of porous texture are preserved after firing at 673 K. The diffraction patterns of sample fired above 973 K show only the presence of anatase crystalline phase. The crystalline structure of the support remained unaltered after molybdenum adsorption, but the surface area and the micropore volume were drastically reduced. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) of thiophene over a series of Co-Mo/gamma-Al2O3, hydrodesulfurization (HDS) catalysts with varying Co to Mo ratios have been studied with the objective of understanding the promotional role of Co in the HDS reaction. As part of the study, the desorptions (TPD) and hydrogenations (TPSR) of butane, butene, and butadiene over these catalysts have also been investigated. The TPD of the hydrocarbons over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site, with higher heats of desorption, without significantly affecting desorption from the original site. The TPSR measurements showed that the two sites had separate and independent activity for the hydrogenation of the C-4 hydrocarbons. The TPD of thiophene over catalysts with varying Co to Mo ratios showed a single desorption profile with identical heats of desorption, implying that Co does not affect or influence the adsorption sites for thiophene. The TPSR of the HDS of thiophene, however, showed that, although the products of the HDS reaction-butane, butene, and H2S-are the same irrespective of the Co content, the temperature profiles and the activation barriers for the formation of these species show considerable change with the Co/Co+Mo ratio. The results are discussed in light of the existing models for the promotional role of Co in the HDS reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature programmed-desorption (TPD) of butane, butene, butadiene and thiophene over a series of Co-MO/gamma-Al2O3 catalysts with varying Co to Mo ratio has been investigated. The TPD of butane, butene and butadiene over catalysts containing no Co showed a single desorption profile while incorporation of Co created an additional site without significantly affecting desorption from the original site. The TPD of thiophene over a series of catalysts with varying Co content showed identical desorption temperature as well as heat of desorption. It was concluded that thiophene was adsorbed on the ''Mo-S'' component of the catalyst and was unaffected by the presence of Co.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known from temperature-programmed desorption studies that the binding energy of thiophene over Mo/gamma-Al2O3 and Co-Mo/gamma-Al2O3, hydrodesulfurization catalysts, is lower in the presence of hydrogen. The adsorption of thiophene on clean and hydrogen-adsorbed MoS2 was modelled using extended Huckel tight binding band structure calculations. In the eta(1) adsorption configuration the calculations show a lower binding energy for adsorption on the hydrogen-preadsorbed surface similar to that observed experimentally. The lowering is due to an increased occupancy of the Mo density of states in the presence of hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of Regioregular Poly(3-hexyl-thiophene) (rrP3HT) and multi wall carbon nanotubes have been investigated by Scanning Tunneling Microscopy in Ultra High Vacuum. Carbon nanotubes covered by rrP3HT have been imaged and analyzed, providing a clear evidence that this polymer self assembles on the nanotube surface following geometrical constraints and adapting its equilibrium chain-to-chain distance. Largely spaced covered nanotubes have been analyzed to investigate the role played by nanotube chirality in the polymer wrapping, evidencing strong rrP3HT interactions along well defined directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning Tunneling Spectroscopy was performed on a (15,0) single wall carbon nanotube partially wrapped by Poly(3-hexyl-thiophene). On the bare nanotube section, the local density of states is in good agreement with the theoretical model based on local density approximation and remarkably is not perturbed by the polymer wrapping. On the coiled section, a rectifying current-voltage characteristic has been observed along with the charge transfer from the polymer to the nanotube. The electron transfer from Poly(3-hexyl-thiophene) to metallic nanotube was previously theoretically proposed and contributes to the presence of the Schottky barrier at the interface responsible for the rectifying behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of pyrrole and thiophene monomers with copper- or nickel-exchanged mordenite has been investigated using X-ray photoelectron (XPS) and photoacoustic infrared (PAIRS) spectroscopies. Because of the differing oxidising powers of the cations studied, polymerisation occurred only with copper-exchanged mordenite. PAIRS and XPS data indicated that both polypyrrole and polythiophene were partially oxidised when synthesised within the zeolite structure. IR spectra of polythiophene and polythiophene and polypyrrole showed intense bands typical of ring vibrations which could couple to the large dipole change induced by charges moving along the polythiophene chain. In addition it was noted that only vibrations typical of oxidised polymer structures were recorded, suggesting that the charge carrier was located within these segments. Furthermore, N 1s spectra contained a high binding energy peak at 402.5 eV which was attributed to a positively charged nitrogen species, in agreement with IR data. Significantly, C 1s spectra confirmed that molecular wires were formed within the confines of the zeolite lattice. Depth-profiling experiments suggested that polypyrrole was distributed throughout the entire zeolite host. By contrast, polythiophene may have been restricted to the uppermost zeolite channels owing to the ability of sulfur species to bond to CuI sites [produced by reduction of copper(II) ions during the polymerisation process], thus obstructing movement along the channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the device physics and charge transport characteristics of high-mobility dual-gated polymer thin-film transistors with active semiconductor layers consisting of thiophene flanked DPP with thienylene-vinylene-thienylene (PDPP-TVT) alternating copolymers. Room temperature mobilities in these devices are high and can exceed 2 cm2 V-1 s-1. Steady-state and non-quasi-static measurements have been performed to extract key transport parameters and velocity distributions of charge carriers in this copolymer. Charge transport in this polymer semiconductor can be explained using a Multiple-Trap-and-Release or Monroe-type model. We also compare the activation energy vs. field-effect mobility in a few important polymer semiconductors to gain a better understanding of transport of DPP systems and make appropriate comparisons.