961 resultados para thermal-effect


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within our study of the plausibility of a subglacial lake under the Amundsenisen Icefield in Southern Spitzbergen, Svalbard achipelago (Glowacki et al., 2007), here we focus on the sensitivity of the system to the thermal effect of the firn and snow layers. Rough heat balance analysis shows that the firn layer plays an important role by driving the heat release to the atmosphere, so that its influence on the ice-water phase transition cannot be neglected (Bucchignani et al., 2012).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of thermal-mechanical loading on a surface mount assembly with interface cracks between the solder and the resistor and between the solder and the printed circuit board (PCB) was studied using a non-linear thermal finite element analysis. The thermal effect was taken as cooling from the solder eutectic temperature to room temperature. Mechanical loading at the ends of the PCB was also applied. The results showed that cooling had the effect of causing large residual shear displacement at the region near the interface cracks. The mechanical loading caused additional crack opening displacements. The analysis on the values of J-integral for the interface cracks showed that J-integral was approximately path independent, and that the effect of crack at the solder/PCB interface is much more serious than that between the component and solder.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermal effects of the heat transfer at free surface (represented by Biot number) on the Rayleigh-Marangoni-Benard instability in a system of liquid-porous layers with top free surface are investigated numerically. The results indicate that this thermal effect can evidently lead to the mode transition of convection, which is overlooked in previous works. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the light-induced lens effect due to thermal and/or photorefractive processes was studied in pyroelectric (undoped and Fe(2+)-doped) lithium niobate crystals (LiNbO(3)) using thermal lens spectrometry with a two-beam (pump-probe) mode-mismatched configuration. The measurements were carried out at two pump beam wavelengths (514.5 and 750 nm) to establish a full understanding of the present effects in this material (thermal and/or photorefractive). We present an easy-to-implement method to determine quantitative values of the pyroelectric coefficient (dPs/dT), its contribution to the thermal effect and other thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT). These measurements were performed in LiNbO(3) and LiNbO(3): Fe (0.1 ppm Fe(2+)) crystals with c axis along the direction of laser propagation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes two simple thermal methods for measuring the energy fluence in J/cm 2 from a diagnostic x-ray exposure. Both detectors absorb essentially 100% of the radiation and give a signal that is directly proportional to the energy fluence of the x-ray beam. One detector measures the thermal effect when a pulse of x rays is totally absorbed in the pyroelectric detector of lead-zirconium-titanate (PZT). The other detector measures the expansion of a gas surrounding a lead disk detector in a photoacoustic chamber. The increased pressure of the gas is transmitted through a 1-mm duct to a sensitive microphone. Both detectors have previously been used to measure the energy fluence rate of continuous x-ray beams in the same energy region using a chopped beam and a lock-in amplifier. Measurement of the energy fluence of a pulse of radiation eliminates the need for the beam chopper and lock-in amplifier and results in a simple, rugged, and inexpensive dosimeter. Either method can be combined with the area of the beam to give an estimate of the imparted energy to the patient from a diagnostic x-ray exposure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In rare earth ion doped solids, a resonant non-linear refractive index, n2, appears when the laser pumps one of the ion excited states and the refractive index change is proportional to the excited state population. In these solids there are usually thermal and non-thermal lensing effects, where the non-thermal one is due to the polarizability difference, Δα, between excited and ground states of the ions. We have used the time resolved Z-scan and a mode-mismatched thermal lens technique with an Ar+ ion laser in Er+3 (20ZnF2-20SrF2-2NaF-16BaF2-6GaF3-(36 - x)InF3-xErF3, with x= 1, 2, 3 and 4 mol%) and Nd+3 (20SrF2-16BaF2-20ZnF2-2GdF3-2NaF-(40 - x)InF3-xNdF3, with x = 0.1, 0.25, 0.5-1 mol%) doped fluoroindate glasses. In both samples we found that the non-linear refraction is due to the thermal effect, while the non-thermal effect is negligible. This result indicates that in fluoride glasses Δα is very small (less than 10-26 cm3). We also measured the imaginary part of the non-linear refractive index (n″2) due to absorption saturation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a new approach for thermal lens analysis using a two-wavelength DSPI (Digital Speckle Pattern Interferometry) setup for wavefront sensing. The employed geometry enables the sensor to detect wavefronts with small phase differences and inherent aberrations found in induced lenses. The wavefronts was reconstructed by four-stepping fringe evaluation and branch-cut unwrapping from fringes formed onto a diffusive glass. Real-time single-exposure contour interferograms could be obtained in order to get discernible and low-spacial frequency contour fringes and obtain low-noise measurements. In our experiments we studied the thermal lens effect in a 4% Er-doped CaO-Al2O3 glass sample. The diode lasers were tuned to have a contour interval of around 120 μm. The incident pump power was longitudinally and collinearly oriented with the probe beams. Each interferogram described a spherical-like wavefront. Using the ABCD matrix formalism we obtained the induced lens dioptric power from the thermal effect for different values of absorbed pump power. © 2012 Copyright SPIE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

IR-visible upconversion fluorescence spectroscopy and thermal effects in pr(3+)/Yb3+-codoped Ga2O3:La2S3 chalcogenide glasses excited at 1.064 mum is reported. Intense visible upconversion emission in the wavelength region of 480-680 nm peaked around 500, 550, 620 and 660 nm is observed. Upconversion excitation of the Pr3+ excited-state visible emitting levels is achieved by st combination of phonon-assisted absorption, energy-transfer and phonon-assisted excited-state absorption processes. A threefold upconversion emission enhancement induced by thermal effects when the codoped sample was heated in the temperature range of 20-200 degreesC is demonstrated. The thermal-induced enhancement is attributed to a multiphonon-assisted anti-Stokes process which takes place in the excitation of the ytterbium and excited-state absorption of the praseodymium. The thermal effect is modelled by conventional rate equations considering temperature-dependent effective absorption cross-sections for the F-2(7/2)-F-2(5/2) ytterbium transition and (1)G(4)-P-3(0) praseadymium excited-state absorption, and it is shown to agree very well with experimental results. Frequency upconversion in singly Pr3+-doped samples pumped at 836 nm and 1.064 mum in a two-beam configuration is also examined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

[EN] The correct determination of the energy generated or absorbed in the sample cell of an Isothermal Titration Calorimeter (ITC) requires a thorough analysis of the calorimetric signal. This means the identification and quantification of any thermal effect inherent to the working method. In this work, it is carried out a review on several thermal effects, studied by us in previous work, and which appear when an ITC is used for measuring the heats of mixing of liquids in a continuous mode. These effects are due to: (i) the difference between the temperature of the injected liquid and the temperature of the mixture during the mixing process, (ii) the increase of the liquid volume located in the mixing cell and (iii) the stirring velocity. Besides, methods for the identification and quantification of the mentioned effects are suggested.