999 resultados para thermal photons


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the thermal photon transverse momentum spectra and elliptic flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at RHIC and in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC, using an ideal-hydrodynamical framework which is constrained by the measured hadron spectra at RHIC and LHC. The sensitivity of the results to the QCD-matter equation of state and to the photon emission rates is studied, and the photon $v_2$ is discussed in the light of the photonic $p_T$ spectrum measured by the PHENIX Collaboration. In particular, we make a prediction for the thermal photon $p_T$ spectra and elliptic flow for the current LHC Pb+Pb collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To achieve high efficiency, the intermediate band (IB) solar cell must generate photocurrent from sub-bandgap photons at a voltage higher than that of a single contributing sub-bandgap photon. To achieve the latter, it is necessary that the IB levels be properly isolated from the valence and conduction bands. We prove that this is not the case for IB cells formed with the confined levels of InAs quantum dots (QDs) in GaAs grown so far due to the strong density of internal thermal photons at the transition energies involved. To counteract this, the QD must be smaller.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at root s(NN) = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect fluid, while for p(T) > 6 GeV/c a reduced anisotropy is interpreted in terms of a path-length dependence for parton energy loss. In this measurement with the PHENIX detector at the Relativistic Heavy Ion Collider we find that for p(T) > 4 GeV/c the anisotropy for direct photons is consistent with zero, which is as expected if the dominant source of direct photons is initial hard scattering. However, in the p(T) < 4 GeV/c region dominated by thermal photons, we find a substantial direct-photon v(2) comparable to that of hadrons, whereas model calculations for thermal photons in this kinematic region underpredict the observed v(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. The X-ray spectra observed in the persistent emission of magnetars are evidence for the existence of a magnetosphere. The high-energy part of the spectra is explained by resonant cyclotron upscattering of soft thermal photons in a twisted magnetosphere, which has motivated an increasing number of efforts to improve and generalize existing magnetosphere models. Aims. We want to build more general configurations of twisted, force-free magnetospheres as a first step to understanding the role played by the magnetic field geometry in the observed spectra. Methods. First we reviewed and extended previous analytical works to assess the viability and limitations of semi-analytical approaches. Second, we built a numerical code able to relax an initial configuration of a nonrotating magnetosphere to a force-free geometry, provided any arbitrary form of the magnetic field at the star surface. The numerical code is based on a finite-difference time-domain, divergence-free, and conservative scheme, based of the magneto-frictional method used in other scenarios. Results. We obtain new numerical configurations of twisted magnetospheres, with distributions of twist and currents that differ from previous analytical solutions. The range of global twist of the new family of solutions is similar to the existing semi-analytical models (up to some radians), but the achieved geometry may be quite different. Conclusions. The geometry of twisted, force-free magnetospheres shows a wider variety of possibilities than previously considered. This has implications for the observed spectra and opens the possibility of implementing alternative models in simulations of radiative transfer aiming at providing spectra to be compared with observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a relativistic hydrodynamic model describing the evolution of the chemically equilibrating quark-gluon plasma system with finite baryon density in a 3+1-dimensional spacetime, we compute photons from the quark phase, hadronic phase and initial non-thermal contributions. It is found that due to the effects of the initial quark chemical potential, chemical equilibration and rapid expansion of the system, the photon yield of the quark-gluon plasma is strongly suppressed, and photons from hadronic matter and initial non-thermal contributions almost reproduce experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility of arbitrarily "adding" and "subtracting" single photons to and from a light field may give access to a complete engineering of quantum states and to fundamental quantum phenomena. We experimentally implemented simple alternated sequences of photon creation and annihilation on a thermal field and used quantum tomography to verify the peculiar character of the resulting light states. In particular, as the final states depend on the order in which the two actions are performed, we directly observed the noncommutativity of the creation and annihilation operators, one of the cardinal concepts of quantum mechanics, at the basis of the quantum behavior of light. These results represent a step toward the full quantum control of a field and may provide new resources for quantum information protocols

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of Photonics is concerned with the generation,control and utilization of photons for performing a variety of tasks.It came to existence as a consequence of the harmonious fusion of optical methods with electronic technology.Wide spread use of laser based methods in electronics is slowly replacing elecrtons with photons in the field of Communication,Control and Computing .Therefore,there is a need to promote the R & D activities in the area of Photonics and to generate well trained manpower in laser related fields.Development and characterization of photonic materials is an important subject of research in the field of Photonics.Optical and thermal characterization of photonic materials using thermal lens technique is a PhD thesis in the field of Photonics in which the author describes how thermal lens effect can be used to characterize themal and optical properties of photonic materials.Plausibility of thermal lens based logic gates is also presented in this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To characterize non-thermal atmospheric pressure plasmas experimentally, a large variety of methods and techniques is available, each having its own specific possibilities and limitations. A rewarding method to investigate these plasma sources is laser Thomson scattering. However, that is challenging. Non-thermal atmospheric pressure plasmas (gas temperatures close to room temperature and electron temperatures of a few eV) have usually small dimensions (below 1 mm) and a low degree of ionization (below 10-4). Here an overview is presented of how Thomson scattering can be applied to such plasmas and used to measure directly spatially and temporally resolved the electron density and energy distribution. A general description of the scattering of photons and the guidelines for an experimental setup of this active diagnostic are provided. Special attention is given to the design concepts required to achieve the maximum signal photon flux with a minimum of unwanted signals. Recent results from the literature are also presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results. Among all modification methods, the intercalation of 2D materials provides the highest possible doping and/or phase change to the pristine 2D materials. This doping effect highly modifies 2D materials, with extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. To study the property changes of 2D materials, we designed and built a planar nanobattery that allows electrochemical ion intercalation in 2D materials. More importantly, this planar nanobattery enables characterization of electrical, optical and structural properties of 2D materials in situ and real time upon ion intercalation. With this device, we successfully intercalated Li-ions into few layer graphene (FLG) and ultrathin graphite, heavily dopes the graphene to 0.6 x 10^15 /cm2, which simultaneously increased its conductivity and transmittance in the visible range. The intercalated LiC6 single crystallite achieved extraordinary optoelectronic properties, in which an eight-layered Li intercalated FLG achieved transmittance of 91.7% (at 550 nm) and sheet resistance of 3 ohm/sq. We extend the research to obtain scalable, printable graphene based transparent conductors with ion intercalation. Surfactant free, printed reduced graphene oxide transparent conductor thin film with Na-ion intercalation is obtained with transmittance of 79% and sheet resistance of 300 ohm/sq (at 550 nm). The figure of merit is calculated as the best pure rGO based transparent conductors. We further improved the tunability of the reduced graphene oxide film by using two layers of CNT films to sandwich it. The tunable range of rGO film is demonstrated from 0.9 um to 10 um in wavelength. Other ions such as K-ion is also studied of its intercalation chemistry and optical properties in graphitic materials. We also used the in situ characterization tools to understand the fundamental properties and improve the performance of battery electrode materials. We investigated the Na-ion interaction with rGO by in situ Transmission electron microscopy (TEM). For the first time, we observed reversible Na metal cluster (with diameter larger than 10 nm) deposition on rGO surface, which we evidenced with atom-resolved HRTEM image of Na metal and electron diffraction pattern. This discovery leads to a porous reduced graphene oxide sodium ion battery anode with record high reversible specific capacity around 450 mAh/g at 25mA/g, a high rate performance of 200 mAh/g at 250 mA/g, and stable cycling performance up to 750 cycles. In addition, direct observation of irreversible formation of Na2O on rGO unveils the origin of commonly observed low 1st Columbic Efficiency of rGO containing electrodes. Another example for in situ characterization for battery electrode is using the planar nanobattery for 2D MoS2 crystallite. Planar nanobattery allows the intrinsic electrical conductivity measurement with single crystalline 2D battery electrode upon ion intercalation and deintercalation process, which is lacking in conventional battery characterization techniques. We discovered that with a “rapid-charging” process at the first cycle, the lithiated MoS2 undergoes a drastic resistance decrease, which in a regular lithiation process, the resistance always increases after lithiation at its final stage. This discovery leads to a 2- fold increase in specific capacity with with rapid first lithiated MoS2 composite electrode material, compare with the regular first lithiated MoS2 composite electrode material, at current density of 250 mA/g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media as composed of two main components: a direct (unscattered), and a scattered component. In this work we developed a detailed model of the effects of absorption and scattering by haze and fog atmospheric aerosols on the optical radiation propagating from the object plane to an imaging system, based on the classical theory of EM scattering. This detailed model is then used to compute the average point spread function (PSF) of an imaging system which properly accounts for the effects of the diffraction, scattering, and the appropriate optical power level of both the direct and the scattered radiation arriving at the pupil of the imaging system. Also, the calculated PSF, properly weighted for the energy contributions of the direct and scattered components is used, in combination with a radiometric model, to estimate the average number of the direct and scattered photons detected at the sensor plane, which are then used to calculate the image spectrum signal to- noise ratio (SNR) in the visible near infra-red (NIR) and mid infra-red (MIR) spectral wavelength bands. Reconstruction of images degraded by atmospheric scattering and measurement noise is then performed, up to the limit imposed by the noise effective cutoff spatial frequency of the image spectrum SNR. Key results of this research are as follows: A mathematical model based on Mie scattering theory for how scattering from aerosols affects the overall point spread function (PSF) of an imaging system was developed, coded in MATLAB, and demonstrated. This model along with radiometric theory was used to predict the limiting resolution of an imaging system as a function of the optics, scattering environment, and measurement noise. Finally, image reconstruction algorithms were developed and demonstrated which mitigate the effects of scattering-induced blurring to within the limits imposed by noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.