972 resultados para therapeutic efficacy
Resumo:
Background: We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE. Methodology/Principal Findings: Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice. Conclusions: Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.
Resumo:
Objective To assess the efficacy of zeta-cypermethrin pour-on to control cattle lice. Design Five field trials in south-eastern Australia. Procedure Zeta-cypermethrin pour-on, deltamethrin pour-on and pour-on vehicle were applied to groups of 10 cattle. Lice were counted before treatment and 14, 28, 42 and 56 days after treatment. Results Zeta-cypermethrin pour-on given at 2.5 mg/kg was equivalent to, or marginally more effective than a deltamethrin pour-on at 0.75 mg/kg. It eliminated B bovis and H eurysternus and gave good control of L vituli and S capillatus. Zeta-cypermethrin at 1 mg/kg gave good control of B bovis and H eurysternus but was not satisfactory against L vituli and S capillatus. Conclusion Zeta-cypermethrin pour-on, given at 2.5 mg/kg, is an effective treatment for cattle lice control. Zeta-cypermethrin, and other synthetic pyrethroid pour-ons, are the treatment of choice to control B bovis.
Resumo:
In this study we evaluated the potential action of ivermectin on third-stage larvae, both at migratory and encysted phases, in mouse tissues after experimental infection with Lagochilascaris minor. Study groups I and II consisted of 120 mice that were orally administered 1,000 parasite eggs. In order to assess ivermectin action upon migratory larvae, group I (60 mice) was equally split in three subgroups, namely I-A, I-B, and I-C. On the 7th day after inoculation (DAI), each animal from the subgroup I-A was treated with 200 µg/Kg ivermectin while subgroup I-B was given 1,000 µg/Kg, both groups received a single subcutaneous dose. To assess the drug action on encysted larvae, group II was equally split in three subgroups, namely II-A, II-B, II-C. On the 45th DAI each animal was treated with ivermectin at 200 µg/Kg (subgroup II-A) and 1,000 µg/Kg (group II-B) with a single subcutaneous dose. Untreated animals of subgroups I-C and II-C were used as controls. On the 60th DAI all animals were submitted to larva search. At a dose of 1,000 µg/Kg the drug had 99.5% effectiveness on third-stage migratory larvae (subgroup I-B). Ivermectin efficacy was lower than 5% on third-stage encysted larvae for both doses as well as for migratory larvae treated with 200µg/Kg.
Resumo:
This work compared the time at which negative seroconversion was detected by conventional serology (CS) and by the ELISA-F29 test on a cohort of chronic chagasic patients treated with nifurtimox or benznidazole. A retrospective study was performed using preserved serum from 66 asymptomatic chagasic adults under clinical supervision, and bi-annual serological examinations over a mean follow-up of 23 years. Twenty nine patients received trypanocide treatment and 37 remained untreated. The ELISA-F29 test used a recombinant antigen which was obtained by expressing the Trypanosoma cruzi flagellar calcium-binding protein gene in Escherichia coli. Among the untreated patients, 36 maintained CS titers. One patient showed a doubtful serology in some check-ups. ELISA-F29 showed constant reactivity in 35 out of 37 patients and was negative for the patient with fluctuating CS. The treated patients were divided into three groups according to the CS titers: in 13 they became negative; in 12 they decreased and in four they remained unchanged. ELISA-F29 was negative for the first two groups. The time at which negativization was detected was significantly lower for the ELISA-F29 test than for CS, 14.5 ± 5.7 and 22 ± 4.9 years respectively. Negative seroconversion was observed in treated patients only. The results obtained confirm that the ELISA-F29 test is useful as an early indicator of negative seroconversion in treated chronic patients.
Resumo:
Lagochilascariosis, a disease caused by Lagochilascaris minor, affects the neck, sinuses, tonsils, lungs, the sacral region, dental alveoli, eyeballs and the central nervous system of humans. A cycle of autoinfection may occur in human host tissues characterized by the presence of eggs, larvae and adult worms. This peculiarity of the cycle hinders therapy, since there are no drugs that exhibit ovicidal, larvicidal and vermicidal activity. Given these facts, we studied the action of levamisole hydrochloride on third-stage larvae in the migration phase (G1) and on encysted larvae (G3) of L. minor. To this end, 87 inbred mice of the C57BL/6 strain were divided into test groups comprising 67 animals (G1-37; G3-30) and a control group (G2-10; G4-10) with 20 animals. Each animal was inoculated orally with 2,000 infective eggs of the parasite. The animals of the test groups were treated individually with a single oral dose of levamisole hydrochloride at a concentration of 0.075 mg. The drug was administered either 30 minutes prior to the parasite inoculation (G1 animals) or 120 days after the inoculation (G3 animals). The mice in the control groups were not treated with the drug. After the time required for the migration and the encysting of L. minor larvae, all the animals were euthanized and their tissues examined. The data were analyzed using the Student's unpaired t-test and the Levene test. The groups showed no statistically significant difference. Levamisole hydrochloride was ineffective on third-stage larvae of L. minor. These findings explain the massive expulsion of live adult worms, as well as the use of long treatment schemes, owing to the persistence of larvae and eggs in human parasitic lesions.
Resumo:
The recent findings on immunodiagnosis of schistosomiasis mansoni have shown that purified Schistosoma mansoni antigens do not provide maximum positivity. Therefore, the authors suggest the use of semi-purified antigens for diagnostic purposes. So far, no serological marker for cured patients as shown by negative stool examination was found. However, a tendency of IgG antibody titre decrease was observed, when egg antigen was used.
Resumo:
The discovery of a targeted therapeutic compound along with its companion predictive biomarker is a major goal of clinical development for a personalized anticancer therapy to date. Here we present evidence of the predictive value of TLR3 expression by tumor cells for the efficacy of Poly (A:U) dsRNA in 194 breast cancer patients enrolled in a randomized clinical trial. Adjuvant treatment with double-stranded RNA (dsRNA) was associated with a significant decrease in the risk of metastatic relapse in TLR3 positive but not in TLR3-negative breast cancers. Moreover, we show the functional relevance of TLR3 expression by human tumor cells for the antitumor effects mediated by dsRNA in several preclinical mouse models carried out in immunocompromised animals. These 2 independent lines of evidence relied upon the generation of a novel tool, an anti-TLR3 antibody (40F9.6) validated for routine detection of TLR3 expression on paraffin-embedded tissues. Altogether, these data suggest that dsRNA mediates its therapeutic effect through TLR3 expressed on tumor cells, and could therefore represent an effective targeted treatment in patients with TLR3-positive cancers.
Resumo:
Due to its small size and particular isolating barriers, the eye is an ideal target for local therapy. Recombinant protein ocular delivery requires invasive and painful repeated injections. Alternatively, a transfected tissue might be used as a local producer of transgene-encoded therapeutic protein. We have developed a nondamaging electrically mediated plasmid delivery technique (electrotransfer) targeted to the ciliary muscle, which is used as a reservoir tissue for the long-lasting expression and secretion of therapeutic proteins. High and long-lasting reporter gene expression was observed, which was restricted to the ciliary muscle. Chimeric TNF-alpha soluble receptor (hTNFR-Is) electrotransfer led to elevated protein secretion in aqueous humor and to drastic inhibition of clinical and histological inflammation scores in rats with endotoxin-induced uveitis. No hTNFR-Is was detected in the serum, demonstrating the local delivery of proteins using this method. Plasmid electrotransfer to the ciliary muscle, as performed in this study, did not induce any ocular pathology or structural damage. Local and sustained therapeutic protein production through ciliary muscle electrotransfer is a promising alternative to repeated intraocular protein administration for a large number of inflammatory, degenerative, or angiogenic diseases.
Resumo:
The benefit of polymeric immuno-nanoparticles (NPs-Tx-HER), consisting of paclitaxel (Tx)-loaded nanoparticles coated with anti-HER2 monoclonal antibodies (Herceptin, trastuzumab), in cancer treatment was assessed in a disseminated xenograft ovarian cancer model induced by intraperitoneal inoculation of SKOV-3 cells overexpressing HER2 antigens. The study was focused on the evaluation of therapeutic efficacy and biodistribution of NPs-Tx-HER compared to other Tx formulations. The therapeutic efficacy was determined by two methods: bioluminescence imaging and survival rate. The treatment regimen consisted in an initial dose of 20mg/kg Tx administered as 10mg/kg intravenously (IV) and 10mg/kg intraperitonealy (IP), followed by five alternative IP and IV injections of 10mg/kg Tx every 3 days. The bioluminescence study has clearly shown the superior anti-tumor activity of NPs-Tx-HER compared to free Tx. As a confirmation of these results, a significantly longer survival of mice was observed for NPs-Tx-HER treatment compared to free Tx, Tx-loaded nanoparticles coated with an irrelevant mAb (Mabthera, rituximab) or Herceptin alone, indicating the potential of immuno-nanoparticles in cancer treatment. The biodistribution pattern of Tx was assessed on healthy and tumor bearing mice after IV or IP administration. An equivalent biodistribution profile was observed in healthy mice for Tx encapsulated either in uncoated nanoparticles (NPs-Tx) or in NPs-Tx-HER. No significant difference in Tx biodistribution was observed after IV or IP injection, except for a lower accumulation in the lungs when NPs were administered by IP. Encapsulated Tx accumulated in the organs of the reticulo-endothelial system (RES) such as the liver and spleen, whereas free Tx had a non-specific distribution in all tested organs. Compared to free Tx, the single dose injection (IV or IP) of encapsulated Tx in mice bearing tumors induced a higher tumor accumulation. However, no difference in overall tumor accumulation between NPs-Tx-HER and NPs-Tx was observed. In conclusion, the encapsulation of Tx into NPs-Tx-HER immuno-nanoparticles resulted in an improved efficacy of drug in the treatment of disseminated ovarian cancer overexpressing HER2 receptors.
Resumo:
Strategies aimed at the lowering of blood ammonia remain the treatment of choice in portal-systemic encephalopathy (PSE). L-ornithine-L-aspartate (OA) has recently been shown to be effective in the prevention of ammonia-precipitated coma in humans with PSE. These findings prompted the study of mechanisms of the protective effect of OA in portacaval-shunted rats in which reversible coma was precipitated by ammonium acetate administration (3.85 mmol/kg i.p.). OA infusions (300 mg/kg/h, i.v) offered complete protection in 12/12 animals compared to 0/12 saline-infused controls. This protective effect was accompanied by significant reductions of blood ammonia, concomitant increases of urea production and significant increases in blood and cerebrospinal fluid (CSF) glutamate and glutamine. Increased CSF concentrations of leucine and alanine also accompanied the protective effect of OA. These findings demonstrate the therapeutic efficacy of OA in the prevention of ammonia-precipitated coma in portacaval-shunted rats and suggest that this protective effect is both peripherally-mediated (increased urea and glutamine synthesis) and centrally-mediated (increased glutamine synthesis).
Resumo:
The present study aimed to notify the history of albendazole sulphoxide (ALB-SO) and albendazole (ALBZ) efficacy against Taenia saginata cysticercus (Cysticercus bovis) parasitizing experimentally infected bovines. A total of 11 efficacy trials were performed between the years of 2002 and 2010. In order to perform these trials, animals were individually inoculated with 2 x 104 eggs of T. saginata in each study's day zero (DO). For every trial, a positive control group (untreated infected animals) and a negative control group (animals that were neither infected nor treated) were used. ALB-SO or ALB were administered in the different dosages, in different days of treatments. In a last study with this formulation, this active principle was administered orally, mixed with the mineral supplement, on the 60th DPI, in a dosage of 30 mg/kg. In all trials, on the 100th DPI, all animals were euthanized and submitted to the sequenced slicing of 26 anatomical segments (fragments of approximately five millimeters) for the survey of T. saginata cysticercus. With the obtained results it is possible to verify that in the first trials, conducted in 2002, ALB-SO reached, independently of dosage and treatment scheme, efficacies superior to 98% (arithmetic means). The trials conducted in 2005 (2.5 mg/kg on the 30th, 60th, and 90th DPI) obtained values of efficacy all inferior to 60%. In 2008, the trials with 2.5 and 7.7 mg/kg demonstrated efficacy values inferior to 40%, for both dosages and treatment schemes (30th/60th/90th DPI and 60th DPI). When this formulation was administered orally on the dosage of 30 mg/kg on the 60th DPI, the efficacy against T. saginata cysticercus reached 88.28%. ALB administered orally showed efficacy values of 0.0%, 29.88% and 28.64% in the dosages of 5, 10 and 15 mg/kg, respectively, using the treatment schemes described above for each dosage. Based on the results of these trials, conducted in an eight year period (2002-2010) using the sequenced slicing method for evaluating the efficacy of the aforementioned formulations against T. saginata cysticercus, it is possible to observe that, amongst the few molecules used in the chemotherapic treatment against T. saginata larvae, ALB-SO, administered in varied routes, dosages and treatment schemes, the studies conducted in 2008, 2009, and 2010, have a low therapeutic efficacy against C bovis in Brazil, while ALBZ had insignificant efficacy values against T. saginata larvae parasitizing experimentally infected bovines. However, future studies using molecular biology will be necessary to assess whether the difference on the efficacy of the ALB-SO can be related to strain or another specific factor. (C) 2013 Elsevier Inc. All rights reserved.
Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer
Resumo:
Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endogenous and introduced TCR α and TCR β-chains, which might lead to off-target autoimmune reactions, similar to Graft-versus-host disease (GvHD). rnIn this study we evaluated the safety issues, which rise by the risk of p53TCR gene transfer-associated on/off-target toxicities as well as the anti-tumor response in vivo in a syngeneic HLA-A*0201 transgenic mouse model. We could successfully demonstrate that opt sc p53-specific TCR-redirected T cells prevent TCR mispairing-mediated lethal off-target autoimmunity in contrast to the parental opt αβ-chain p53-specific TCR. Since the sc p53-specific TCR proofed to be safe, all further studies were performed using sc p53-specific TCR redirected T cells only. Infusion of p53-specific TCR-redirected T cells in Human p53 knock-in (Hupki) mice after lymphodepletion-preconditioning regimen with either sublethal body irradiation (5Gy) or chemotherapy (fludarabine and cyclophosphamide) in combination with vaccination (anti-CD40, CpG1668 and p53(257-282) peptide) did not result in a depletion of hematopoietic cells. Moreover, adoptive transfer of high numbers of p53-specific TCR-redirected T cells in combination with Interleukin 2 (IL-2) also did not lead to toxic on-target reactions. The absence of host tissue damage was confirmed by histology and flow cytometry analysis. Furthermore, p53-specific TCR-redirected T cells were able to lyse p53+A2.1+ tumor cells in vitro. However, in vivo studies revealed the potent suppressive effect of the tumor microenvironment (TME) mediated by tumor-infiltrating myeloid-derived suppressor cells (MDSC). Accordingly, we could improve an insufficient anti-tumor response in vivo after injection of the sc p53-specific TCR-redirected T cells by additional depletion of immunosuppressive cells of the myeloid lineage.rnTogether, these data suggest that the optimized sc p53(264-272)-specific TCR may represent a safe and efficient approach for TCR-based gene therapy. However, combinations of immunotherapeutic strategies are needed to enhance the efficacy of adoptive cell therapy (ACT)-mediated anti-tumor responses.