92 resultados para théorème d’Arrow
Resumo:
In spatial environments, we consider social welfare functions satisfying Arrow's requirements. i.e., weak Pareto and independence of irrelevant alternatives. When the policy space os a one-dimensional continuum, such a welfare function is determined by a collection of 2n strictly quasi-concave preferences and a tie-breaking rule. As a corrollary, we obtain that when the number of voters is odd, simple majority voting is transitive if and only if each voter's preference is strictly quasi-concave. When the policy space is multi-dimensional, we establish Arrow's impossibility theorem. Among others, we show that weak Pareto, independence of irrelevant alternatives, and non-dictatorship are inconsistent if the set of alternatives has a non-empty interior and it is compact and convex.
Resumo:
A desirable property of a voting procedure is that it be immune to the strategic withdrawal of a candidate for election. Dutta, Jackson, and Le Breton (Econometrica, 2001) have established a number of theorems that demonstrate that this condition is incompatible with some other desirable properties of voting procedures. This article shows that Grether and Plott's nonbinary generalization of Arrow's Theorem can be used to provide simple proofs of two of these impossibility theorems.
Resumo:
Si on considère une famille de variétés projectives complexes non singulières, c"est un fait aujourd'hui bien connu que les possibles variétés singulières vers lesquelles peut dégénerer cette famille doivent vérifier certaines contraintes, parmi lesquelles une importante relation entre la cohomologie de la fibre singulière, la cohomologie de la fibre générique et la monodromie de la famille, qui est precise par le théorème local des cycles invariants prouvé par Clemens, Deligne et Steenbrink ([1], [4], [13]) : tous les cocycles de la fibre générique qui sont invariants par la monodromie autour d¡une fibre singulière proviennent par spécialisation de la cohomologie de cette fibre singulière.
Resumo:
Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants et des plus importants de l'analyse mathématique ; à savoir qu'une fonction à variation bornée est dérivable presque partout. Le but de ce travail est de fournir, à part la démonstration souvent proposée dans les cours de la théorie de la mesure, d'autres démonstrations élaborées avec des outils mathématiques plus simples. Ma contribution a consisté essentiellement à détailler et à compléter ces démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité. Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes, en proposer l'historique et trois démonstrations différentes.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L'objectif de ce mémoire est de démontrer certaines propriétés géométriques des fonctions propres de l'oscillateur harmonique quantique. Nous étudierons les domaines nodaux, c'est-à-dire les composantes connexes du complément de l'ensemble nodal. Supposons que les valeurs propres ont été ordonnées en ordre croissant. Selon un théorème fondamental dû à Courant, une fonction propre associée à la $n$-ième valeur propre ne peut avoir plus de $n$ domaines nodaux. Ce résultat a été prouvé initialement pour le laplacien de Dirichlet sur un domaine borné mais il est aussi vrai pour l'oscillateur harmonique quantique isotrope. Le théorème a été amélioré par Pleijel en 1956 pour le laplacien de Dirichlet. En effet, on peut donner un résultat asymptotique plus fort pour le nombre de domaines nodaux lorsque les valeurs propres tendent vers l'infini. Dans ce mémoire, nous prouvons un résultat du même type pour l'oscillateur harmonique quantique isotrope. Pour ce faire, nous utiliserons une combinaison d'outils classiques de la géométrie spectrale (dont certains ont été utilisés dans la preuve originale de Pleijel) et de plusieurs nouvelles idées, notamment l'application de certaines techniques tirées de la géométrie algébrique et l'étude des domaines nodaux non-bornés.
Resumo:
Les lecteurs de La Ceppède seront contents de recevoir le livre de Julien Gœury car son étude représente une addition importante aux ouvrages récents sur le poète aixois. Faisant partie de la redécouverte critique des Théorèmes initiée par les travaux de Jean Rousset dans les années 50, L'Autopsie et le théorème jette un nouveau regard sur l'oeuvre laceppédienne en adoptant ce que l'on peut appeler une perspective néo-structuraliste. L'exposé se divise en quatre parties: 1) Morphologie, 2) Anatomie, 3) Physiologie et 4) Psychologie. Une telle répartition suggere le désir de dégager le caractère organique du texte dans le cadre d'une organisation bien schématisée. Concernant la première categorie, Gœury met en exergue la construction générale du texte, signalant au départ “l'architecture extérieure” (23) ainsi que “l'architecture intérieure” (54) dans la composition des livres et des recueils qui édifient l'ouvrage. Ici, le lecteur note l'accent mis sur la signification du frontispice, des pages de titres, et sur d'autres éléments paratextuels. Toujours dans la première partie, Gœury suit l'exemple de plusieurs critiques en examinant l'emploi du sonnet comme mode de discours. L'auteur met en avant des “lois de composition” (141) qui renforcent “l'engagement formel” (151) du texte ainsi que son “architecture phonetique” (157). S'ajoutent à l'examen morphologique des observations sur les différentes formes “d'enjambement” (168) et de “fragmentation” (174) qui se manifestent dans les sonnets.
Resumo:
Cover title: Bud of promise : Blossom in the desert.
Resumo:
Mode of access: Internet.
Resumo:
BACKGROUND: The findings of prior studies of air pollution effects on adverse birth outcomes are difficult to synthesize because of differences in study design. OBJECTIVES: The International Collaboration on Air Pollution and Pregnancy Outcomes was formed to understand how differences in research methods contribute to variations in findings. We initiated a feasibility study to a) assess the ability of geographically diverse research groups to analyze their data sets using a common protocol and b) perform location-specific analyses of air pollution effects on birth weight using a standardized statistical approach. METHODS: Fourteen research groups from nine countries participated. We developed a protocol to estimate odds ratios (ORs) for the association between particulate matter <= 10 mu m in aerodynamic diameter (PM(10)) and low birth weight (LBW) among term births, adjusted first for socioeconomic status (SES) and second for additional location-specific variables. RESULTS: Among locations with data for the PM(10) analysis, ORs estimating the relative risk of term LBW associated with a 10-mu g/m(3) increase in average PM(10) concentration during pregnancy, adjusted for SES, ranged from 0.63 [95% confidence interval (CI), 0.30-1.35] for the Netherlands to 1.15 (95% CI, 0.61-2.18) for Vancouver, with six research groups reporting statistically significant adverse associations. We found evidence of statistically significant heterogeneity in estimated effects among locations. CONCLUSIONS: Variability in PM(10)-LBW relationships among study locations remained despite use of a common statistical approach. A more detailed meta-analysis and use of more complex protocols for future analysis may uncover reasons for heterogeneity across locations. However, our findings confirm the potential for a diverse group of researchers to analyze their data in a standardized way to improve understanding of air pollution effects on birth outcomes.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)