944 resultados para textual complexity analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using online knowledge communities (OKCs) as informal learning environments poses the question how likely these will integrate newcomers as peripheral participants. Previous research has identified surface characteristics of the OKC dialog as integrativity predictors. Yet, little is known about the role of dialogic textual complexity. This contribution proposes a comprehensive approach based on previously validated textual complexity indexes and applies it to predict OKC integrativity. The dialog analysis of N = 14 blogger communities with a total of 1937 participants identified three main components of textual complexity: dialog participation, structure and cohesion. From these, dialog cohesion was higher in integrative OKCs, thus significantly predicting OKC integrativity. This result adds to previous OKC research by uncovering the depth of OKC discourse. For educational practice, the study suggests a way of empowering learners by automatically assessing the integrativity of OKCs in which they may attempt to participate and access community knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To evaluate the influence of oral contraceptives (OCs) containing 20 mu mu g ethinylestradiol (EE) and 150 mu mu g gestodene (GEST) on the autonomic modulation of heart rate (HR) in women. Methods One-hundred and fifty-five women aged 24 +/-+/- 2 years were divided into four groups according to their physical activity and the use or not of an OC: active-OC, active-non-OC (NOC), sedentary-OC, and sedentary-NOC. The heart rate was registered in real time based on the electrocardiogram signal for 15 minutes, in the supine-position. The heart rate variability (HRV) was analysed using Shannon`s entropy (SE), conditional entropy (complexity index [CInd] and normalised CInd [NCI]), and symbolic analysis (0V%, 1V%, 2LV%, and 2ULV%). For statistical analysis the Kruskal-Wallis test with Dunn post hoc and the Wilcoxon test (p < 0.05 was considered significant) were applied. Results Treatment with this COC caused no significant changes in SE, CInd, NCI, or symbolic analysis in either active or sedentary groups. Active groups presented higher values for SE and 2ULV%, and lower values for 0V% when compared to sedentary groups (p < 0.05). Conclusion HRV patterns differed depending on life style; the non-linear method applied was highly reliable for identifying these changes. The use of OCs containing 20 mu mu g EE and 150 mu mu g GEST does not influence HR autonomic modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is twofold: to analyze the computational complexity of the cogeneration design problem; to present an expert system to solve the proposed problem, comparing such an approach with the traditional searching methods available.Design/methodology/approach - The complexity of the cogeneration problem is analyzed through the transformation of the well-known knapsack problem. Both problems are formulated as decision problems and it is proven that the cogeneration problem is np-complete. Thus, several searching approaches, such as population heuristics and dynamic programming, could be used to solve the problem. Alternatively, a knowledge-based approach is proposed by presenting an expert system and its knowledge representation scheme.Findings - The expert system is executed considering two case-studies. First, a cogeneration plant should meet power, steam, chilled water and hot water demands. The expert system presented two different solutions based on high complexity thermodynamic cycles. In the second case-study the plant should meet just power and steam demands. The system presents three different solutions, and one of them was never considered before by our consultant expert.Originality/value - The expert system approach is not a "blind" method, i.e. it generates solutions based on actual engineering knowledge instead of the searching strategies from traditional methods. It means that the system is able to explain its choices, making available the design rationale for each solution. This is the main advantage of the expert system approach over the traditional search methods. On the other hand, the expert system quite likely does not provide an actual optimal solution. All it can provide is one or more acceptable solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetoencephalography (MEG) allows the real-time recording of neural activity and oscillatory activity in distributed neural networks. We applied a non-linear complexity analysis to resting-state neural activity as measured using whole-head MEG. Recordings were obtained from 20 unmedicated patients with major depressive disorder and 19 matched healthy controls. Subsequently, after 6 months of pharmacological treatment with the antidepressant mirtazapine 30 mg/day, patients received a second MEG scan. A measure of the complexity of neural signals, the Lempel–Ziv Complexity (LZC), was derived from the MEG time series. We found that depressed patients showed higher pre-treatment complexity values compared with controls, and that complexity values decreased after 6 months of effective pharmacological treatment, although this effect was statistically significant only in younger patients. The main treatment effect was to recover the tendency observed in controls of a positive correlation between age and complexity values. Importantly, the reduction of complexity with treatment correlated with the degree of clinical symptom remission. We suggest that LZC, a formal measure of neural activity complexity, is sensitive to the dynamic physiological changes observed in depression and may potentially offer an objective marker of depression and its remission after treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine the disability discourses present in Ontario elementary schools curriculum. The study used a critical social analysis perspective to employ a textual discourse analysis on the Planning [title of subject] Programs for Students with Special Education Needs (PPSSEN) section of the curriculum. The present study utilized Parker's (1992) seven criteria for distinguishing discourses and discovered five main discourses; Independent, dependent, legal, scientific and agency discourses. The second step to this research was the placement and discussion of these five discourses on three diverse texts, Paulo Freire's (2008) Pedagogy o/ the Oppressed, Psychiatry Inside Out, Selected writings of Franco Basaglia, written by Scheper-Huges and Lovell (1987) and Aronowitz and Giroux's (1985) Education Under Siege: The Conservative, Liberal and Radical Debate over Schooling. These unique perspectives were used as methods of analysis tools to further analyze the dominate disability discourses. The texts provided textual support in three major areas; dialectics, critical education and structural conditions of power and language of traditional roles and responsibilities. The findings and discussions presented in this project contain significant implications for anyone involved with students with disabilities in any education system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)