8 resultados para termisk energilagring
Resumo:
Uppsatta mål för kraftigt minskad mängd köpt energi inom byggnadssektorn öppnar upp för alternativa tekniker när både befintliga och nya byggnader ska energieffektiviseras. Genom att lagra värme och/eller kyla kan tillgänglig energi flyttas i tid och bidra till energieffektivisering genom t.ex. en ökad andel förnyelsebar energi eller minskad toppeffekt.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.
Resumo:
Dagens kombisolvärmesystem för enfamiljshus har i storleksordningen 10 m2 solfångare och kan täcka i runda tal 10 ? 30 % av det årliga värmebehovet. Ökar man solfångarytan för att öka solvärmetäckningsgraden uppstår det vanligtvis en överproduktion av värme sommartid viket kan orsaka problem i form av termisk utmattning av material, att material förstörs eller att säkerhetsventiler utlöses med driftsstopp som följd. Vidare förkortas glykolens livslängd radikalt och detta kan ge följdskador såsom korrosion, beläggningar i rören och t o m igensättning av systemet. Ett sätt att undvika problemen med överhettning i solvärmesystem med hög täckningsgrad är att använda lastanpassade solfångare. Med detta menas solfångare som har en verkningsgrad som är beroende av solhöjden och varierar över året. Verkningsgraden är hög när värmelasten är hög (vanligtvis sen höst, vinter och tidig vår) medan verkningsgraden är låg då värmelasten är låg (vanligtvis sen vår, sommar och tidig höst). I denna rapport visas att det är möjligt att bygga lastanpassade solfångarsystem med hög täckningsgrad för enfamiljshus med solfångarytor som täcker hela villatak (>= 40 m2), utan att den termiska påfrestningen på systemet blir större än för vanliga solvärmesystem med 10 m2 plana solfångare. Detta kan göras med samma systemkomponenter som finns i system med plana solfångare. De lastanpassade solfångarna levererar ungefär samma energimängd per m2 som plana solfångare, men de bör kunna bli billigare, på grund av lägre materialkostnad. Det finns även en potential att konstruera lastanpassade solvärmesystem med begränsad stagnationstemperatur, vilket kan möjliggöra användandet av billigare material. En och samma solfångartyp är lämplig för såväl stora som små system och för olika takvinklar. I rapporten redovisas optimerade solfångargeometrier för lastanpassade solvärmesystem, geometrier och optiska egenskaper för praktiskt möjliga solfångare samt beräkningar av förväntat årsutbyte, stagnationstemperaturer, stagnationstider och kostnader. Testresultat för två prototyper av lastanpassade solfångare presenteras. Optimeringsalgoritmer för design av optiken för lastanpassade solfångare i system samt ett ray-tracingverktyg och snabba men ändå tillräckligt noggranna simuleringsverktyg har utvecklats.
Resumo:
Dagens vanliga ackumulatortanksystem har för dålig skiktning i ackumulatortanken, vilket leder till försämrad effektivitet hos systemen. För att förbättra den krävs komponenter, som kan ladda och framförallt urladda med bättre skiktningsegenskaper. Ackumulatorvärmesystem som t ex vedpanna med tank och solvärmesystem kan öka sin effektivitet, om tankens skiktning främjas. En ny typ av varmvattenberedare, sk tappvattenautomater har tagits fram bl a för att ersätta trasiga eller igenkalkade varmvattenberedare i villapannor. Dessa tappvattenautomater har visat sig kunna vara intressanta även för anslutning till ackumulatortankar. Konsumentverket gav SERC uppdraget att testa dessa nya automater för att se hur väl de fungerar i ackumulatorsystem. Vi har testat tre olika fabrikat: Alfajet, Cetetherm och Solvis. Cetetherm provades förutom i grundversionen med trevägsventil, även med en tvåvägsventil. Totalt testades således fyra olika konstruktioner, som skiljer sig i värmeväxlarstorlek och reglerstrategi. I rapporten visas driftsegenskaper och termiska prestanda för tappvattenautomaterna med hjälp av diagram, som upprättades efter omfattande mätningar. Tappvattenautomaterna, som i grundutförande var avsedda för värmepannor, är inte lämpliga för användning tillsammans med ackumulatortank. Tappvattenautomater med god termisk prestanda och till ackumulatorsystem anpassad reglerstrategi ger däremot gott resultat. Alfajet och Cetetherm med trevägsventil är mindre lämpade för ackumulatorvärme-system. En onödigt hög returtemperatur till ackumulatortanken leder till dålig skiktning vid urladdning och därigenom kan en mindre del av energiinnehållet i tanken tillgodogöras. Genom att ersätta trevägsventilen hos Cetetherm med en tvåvägsventil, förbättras den termiska funktionen vid användning med ackumulatortank. Solvis tappvattenautomat var från början konstruerad för solvärmesystem med ackumulatortank och visade sig ha god prestanda. Tappvattenautomaterna testades även med avseende på varmvattenkomforten vid flödesändringar. Ingen av tappvattenautomaterna visade sig kunna reglera varmvattentemperaturen lika bra som ett traditionellt system med väl fungerande blandningsventil. Tappvattenautomatens inverkan på ett solvärmesystems täckningsgrad under sommarhalvårets väderförhållanden testades i SERCs sexdagarstest. I jämförelse till de hittills bästa konventionella system med inbyggda värmeväxlare av typ kamflänsrör kunde täckningsgraden för ett i övrigt likvärdigt system höjas med upp till 15 procentenheter. Marknadspriset för tappvattenautomater på omkring 10 000 kr är fortfarande för högt, för att den skall kunna konkurrera med konventionella system. Vidareutvecklade förenklade system, som produceras i större serier kommer enligt vår bedömning att kunna erbjudas till lägre pris i framtiden.
Resumo:
SolNET var den första europeiska forskarskolan för termisk solvenergi med 10 doktorander, där sju gemensamma doktorandkurser utvecklades och genomfördes under projektets gång. Projektet stöddes av EU-programmet Marie-Curie från juni 2006 till maj 2010.Centrum för solenergiforskning SERC vid Högskolan Dalarna deltog med en doktorand, Janne Paavilainen. SERC genomförde den första av doktorandkurserna, om dynamisk systemsimulering. 30 studenter deltog från 16 länder varav 22 var doktorander och tre var från industri.Under 2007 genomförde Paavilainen en teknoekonomisk utvärdering av mellanstora pellet- och solvärmesystem för närvärme som presenterades vid konferensen Eurosun 2008. Resultaten visar under vilka förutsättningar som solvärme kan vara ekonomisk lönsamt i närvärmesystem i Sverige och Finland. Paavilainen har varit medförfattare till en tidsskriftsartikel om SERCs simuleringsmodell för pelletspannor och –kaminer samt varit medförfattare till två tidsskriftsartiklar tillsammans med SPF (Schweiz) och TU Graz (Österrike) om en ny pannmodell för gas, olja och pellets. Dessa två validerade modeller i programmet TRNSYS används nu rutinmässigt i Sverige av SP och SERC och i Europa av ett flertal forskargrupper. Den nya pannmodellen som utvecklades med SPF och TU Graz har också införlivats i programmet Polysun som används av flera hundra användare runt hela världen, inkl. SERCs magisterstudenter.
Resumo:
Recent developments in biological research, has shown that the initial maximum permissible exposure (MPE) limits for protection of workers from risks associated with artificial optical radiations were more stringent than needed. Using the most recent MPE limits for artificial optical radiation this piece of work was focused on the investigation of the level of visible light attenuation needed by automatic welding filters in case of switching failure. Results from the comparison of different exposure standards were employed in investigating the need of Vis/IR and blue light transmittance requirement for automatic welding filters. Real and arbitrary spectra were taken into consideration for the worst and best case scenarios of artificial optical radiations. An excel worksheet developed during the execution of this project took into consideration the exposure from different light sources and the precision of the spectrometer used in measuring the transmittances of a welding filter. The worksheet was developed and tested with known product properties to investigate the validity of its formulation. The conclusion drawn from this project was that attenuation in the light state will be needed for products with the darkest state shade 11 or higher. Also shown is that current welding filter protects the eye well enough even in the case of switching failure.
Resumo:
SP i Borås och SERC, Högskolan Dalarna har i samverkan tagit fram en systemprovnings-metod där kompletta sol- och pelletsvärmesystem har provats i laboratorium under sex dygn. Plus två inledande dygn för termisk stabilisering av systemet. Provningen innefattar verklig-hetstrogna lastfall för två sommardagar, två vinterdagar, och två vår/höstdagar. Syftet är att få fram information om systemets helårsprestanda och systemfunktion genom en kortare tids provning. Vid mätningarna som genomförts vid Högskolan Dalarna har syftet också varit att undersöka systemens emissionsprestanda. Emissionsmätningarna ingår normalt inte i system-provningen, eftersom det skulle öka kostnaderna för att genomföra proven. Ett komplett system inklusive regulatorer provas med undantag för solfångaren, som utgörs av en dator-styrd rigg för att kunna skapa en repeterbar solvärmemängd från en systemspecifik solfångar-krets.Totalt har sju olika sol-pelletsystem provats samt ett referenssystem som utgörs av en kombi-panna utan solvärme. Dessutom har det inom projektet genomförts en jämförande provning mellan SP och Högskolan Dalarna på samma system. Provningsmetoden som utvecklats i detta projekt har visat sig kunna uppfylla målen, det vill säga kunna jämföra systemprestanda mellan olika system och uppskatta årsprestandan. Till detta har även eventuella driftsproblem i systemen kunnat identifieras så att dessa kan åtgärdas och systemen förbättras. För att förbättra provningsmetoden och öka noggrannheten i utvärderingen föreslås ett antal åtgärder inför en fortsatt provning. De viktigaste förändringarna är att se till att pannans och systemets laddstatus är så lika som möjligt vid början av sexdagarssekvensen, liksom vid sekvensens slut. Detta kräver två olika åtgärder: dels att de inledande två dygnen är identiska med de sista två dygnen och att panna triggas igång ett par timmar innan sekvensens början och slut, så att risken minskar att pannan levererar värme till tanken vid sekvensens början och slut. Vidare föreslås att en ny metod skall användas för att mäta värmeavgivningen till rummet från kaminer och att dess noggrannhet undersöks.För att åstadkomma exakt rätt last och solvärmetillskott vid provningen skall riggen använda en teknik med kontinuerlig kompensation av last och solvärmetillskott så att uppmätt och önskad energimängd alltid blir densamma i alla provningar. Detta förenklar även handhavan-det vid provningen och underlättar utvärderingen. För att kunna ge bättre återkoppling och kunna ge råd till hur systemen skall förbättras bör tanktemperaturen alltid mätas i några punk-ter och att förlustkoefficienter för panna och tank tas fram genom ett separat avsvalningsprov.Systemprovningen visar generellt att det är gynnsamt att kombinera pelleteldning med sol-värme. Pelletpannor har en låg verkningsgrad under låglastperioden och med solvärme kan pannan stängas av när driftsförutsättningarna är som sämst. Hög pannverkningsgrad liksom en väl fungerande ackumulatortank och styrsystem har visat sig vara avgörande för att erhålla höga systemprestanda i denna provningsmetod. Pannverk-ningsgraden över mätperioden är betydligt lägre än för motsvarande pannor under stationär drift på full effekt. Detta beror på att driftstiden för brännaren endast utgör en liten del av hela provningsperioden och därför blir pannans egenskaper under stilleståndsperioderna desto viktigare för systemets prestanda. Under stilleståndsperioderna är det värmeförlusterna till rummet som är avgörande för prestandan, medan värmeförlusterna har en försumbar inverkan på verkningsgraden när pannan eldas på full effekt enligt provningsmetoden för pannor EN 303-5. Resultaten pekar alltså på att de normala prestandaprovningarna för pannor enligt EN 303-5 inte ger någon garanti för att pannan är effektiv under verklighetstrogen drift och att provning vid stationär effekt inte heller styr utvecklingen mot bättre isolerade pannor och därmed effektivare sol- och biovärmesystem.Solfångarens prestanda och storlek har också relativt liten inverkan på den totala systempres-tandan. Solfångarprovning som garanterar solfångarens prestanda är viktigt för att garantera solfångarnas kvalitet och prestanda, men alltså inte på något sätt avgörande för att uppnå höga årsprestanda i kombinerade sol- och biobränslesystem Det finns uppenbarligen en stor förbätt-ringspotential för denna typ av system och den utvecklade provmetoden är ett mycket viktigt redskap för att effektivisera sol- och biovärmesystem.Emissionsfaktorer redovisade som medelvärde för hela provningssekvensen (sex dygn) var mellan 192 och 547 mg/MJ för CO, mellan 61 och 95 mg/MJ för NO, mellan 6 och 45 mg/MJ för TOC och mellan 31 och 116 mg/MJ för partiklar. För CO och NO ligger värdena inom de intervall som redovisas från forskningsprogrammet "biobränsle hälsa och miljö BHM. Upp-mätt medelkoncentration av kolväten och partiklar ligger betydligt högre än de emissionsfak-torer som redovisas av BHM.Andelen av emissionerna som släpps ut under start/stopp sekvenserna ligger mellan 63 och 96 % för CO-utsläppen och mellan 48 och 93 % av TOC-utsläppen. För partiklar är motsvarande andel mellan 30 och 39 % och för NO endast 10 till 21 %. Det betyder att styrningen av brän-naren och emissionskarakteristiken under start/stopp-blir mycket avgörande för hur mycket CO och TOC som släpps ut och att nuvarande metoder för miljömärkning av pelletpannor som baseras på stationära mätningar enligt EN 303-5 inte leder till att emissioner av CO och TOC minimeras på årsbasis.